
1 October 1999 Delphi Informant Magazine

October 1999, Volume 5, Number 10

Cover Art By: Darryl Dennis

ON THE COVER
6 Columns & Rows
Delphi Does ADO — Bill Todd
The most important feature for database application developers in
Delphi 5 is its ADO support. Mr Todd describes the six new components
(including ADOConnection and ADODataSet) that provide complete ADO
support — and an easy way to convert existing applications to ADO.

FEATURES
10 OP Tech
Custom Message Handlers — David Wolfe
Mr Wolfe describes how Windows messages work, and how they’re
translated into VCL events. He then develops a custom scroll box com-
ponent that fires events in response to scrolling messages.

15 Sound + Vision
Agents of Instruction — Eddie Shipman
Love ’em or hate ’em — Genie, Merlin, Peedy, and Robby are here to
stay. Mr Shipman demonstrates how to install Microsoft Agent controls
and characters, and how to interact with them using Delphi.

20 In Development
Open Tools at Work — Keith Wood
Mr Wood implements a source-versioning scheme using Delphi’s Open
Tools API. The add-in updates the text of a label each time a module is
saved, tracking open modules and when they’re closed.

REVIEWS
25 CodeRush 4

Product Review by Robert Vivrette
28 ModelMaker 5

Product Review by Robert K. Leahey

DEPARTMENTS
2 Delphi Tools
5 Newsline
32 File | New by Alan C. Moore, Ph.D.

The New Way to Get to Data

2 October 1999 Delphi Informant Maga

Delphi
T O O L S

New Products
and Solutions
Woll2Woll Releases 1stClass
z

Woll2Woll Software
announced 1stClass, a new
component suite for Delphi and
C++Builder.

1stClass’ main features include
full support for InfoPower; an
advanced tree-view control sup-
porting embedded checkboxes,
radio-buttons, multi-selection,
and more; a sophisticated data-
bound tree-view, which can navi-
gate all the tables in your mas-
ter/detail relationships; the
1stClass TreeCombo for hierarchi-
cally organizing and displaying
items in a drop-down list;
ShapeButton, which has built-in
support for displaying buttons as
arrows, diamonds, ellipses, round-
ed rectangles, or triangles;
ImageButton, which allows you
to load different bitmaps for the
up and down states of the button;
a StatusBar control allowing you
ine
to embed controls into
individual panes of the
status bar; an assortment
of specialized combo and list-
box controls; a Label control that
supports many special effects,
including outlines, shadows,
extrusions, and the ability to
rotate text; and more.
Woll2Woll Software
Price: 1stClass Standard,

US$199; 1stClass Professional, US$299
(includes source code and C++Builder
compatibility).
Phone: (800) 965-2965
Web Site: http://www.woll2woll.com
Triple-T Releases Style One 2.0

Triple-T Software announced

the release of Style One 2.0, a
Windows 95/98/NT utility that
adds style to Web pages. Creating
Cascading Style Sheets (CSS),
Style One allows Web developers
to enhance Web sites with graph-
ics and a consistent look and feel.

Unlike Java, JavaScript, CGI,
and ASP techniques, which are
often filtered out by firewalls,
style sheets are ignored by
older browsers, yet allow newer
browsers such as Netscape 4
and Internet Explorer 4 to dis-
play sophisticated layouts.

Style One allows Web develop-
ers to create styles that will con-
trol font type, alignment and
colors, background graphics and
colors, margins, spacing, and
more. Web developers can create
and store each style once, and
reference it from all Web pages.
The program supports stand-

alone and embedded style sheets.
Style One’s style sheet parser
allows editing of every CSS prop-
erty. Style One also lets Web
developers preview their handi-
work using their favorite external
browser.

Style One supports level 1
and level 2 CSS standards.

Triple-T Software
Price: US$20
Phone: 10-4702396
Web Site: http://www.3-t.com
Z-Soft Announces FileProbe 1.02

Z-Soft released FileProbe 1.02

for Windows 95/98/NT, a new
version of the company’s
advanced file management envi-
ronment for Win32. FileProbe
brings much of the power previ-
ously only available in command
line/scripting environments to the
realm of graphical file managers.
Using FileProbe, one can com-

pare folders containing different
versions of the same project and
highlight the differences. With
the FileProbe selection engine,
one can quickly select thousands
of files across multiple directories
meeting a certain filename and/or
file date criterion. This enables
selective backup operations.
When doing large backup,

copy/move, extraction, compres-
sion, upload, or download opera-
tions, FileProbe runs them in the
background, so the program is left
active and responsive. Any num-
ber of such file operations may be
in progress at the same time.

FileProbe can access and modi-
fy local drives, networked drives,
compressed archives (Zip, Arj,
Ace, Cab, Gz, Tar, etc.), MS
Windows shell, FTP connec-
tions, and more.

Features include regular expres-
sion filename matching, multi-
folder selections, multiple con-
current file operations, transpar-
ent archive contents access, MS
Explorer shell compatibility, fold-
er synchronization, bulk file oper-
ations, FTP-to-FTP transfers, a
generic file search engine, and a
highly configurable user interface.

Z-Soft
Price: Between US$25 and US$55,
depending on platform and program version;
volume discounts are available.
E-Mail: sales@z-soft.com
Web Site: http://z-soft.com

http://www.woll2woll.com
http://www.3-t.com
http://z-soft.com

3 October 1999 Delphi Informant Magazi

Delphi
T O O L S

New Products
and Solutions
PGC’s InstallConstruct 3.1 Is Shipping

Pacific Gold Coast Corp.

announced the release of
InstallConstruct 3.1, a suite of
wizards and tools for creating
Installer, Setup Wizard,
Uninstaller, and HTML-based
Internet Component Download
installers for Windows
3.1/95/98/NT applications.

Users of InstallConstruct 3.1
can create and customize Setup
ne
Wizard with their own product
graphics and logos, and display
formatted text for Internet and
intranet distribution of program,
single, and multi-volume CD-
ROM and disk distributions.

InstallConstruct 3.1 also auto-
matically records the selected
package options of a project as a
package script file (*.adx). These
script files not only save you from
the repetitive task of creating
other similar packages and in
updating the existing ones manu-
ally, they also support command-
line batch processing in unattend-
ed operation, so they can be cre-
ated without user prompts.
This latest release adds user-

defined customization capabilities
for graphics and 3D logo text,
multiple levels of compression,
and the creation of stand-alone
setup programs. In addition, this
new release provides “hidden
password” package protection,
which protects the package from
being extracted externally by
other software.

International languages are sup-
ported, including English,
Danish, Dutch, Finnish, French,
German, Japanese, Norwegian,
Portuguese, and Swedish.

Pacific Gold Coast Corp.
Price: US$199
Phone: (800) 732-3002
Web Site: http://www.pgcc.com/ic
Software Productivity Centre Announces ESTIMATE Professional 4.0

Software Productivity Centre

Inc. announced version 4.0 of its
software project planning and esti-
mation tool, ESTIMATE
Professional.

ESTIMATE Professional 4.0
allows managers to estimate the
effort of developing each compo-
nent, or to import effort alloca-
tions from a scheduler, such as
Microsoft Project or a spreadsheet
application. Users can then bene-
fit from the tool’s ability to
account for uncertainty in the
resulting forecast of staffing levels,
total effort, and risk. The resultant
range of possible schedules and
their likelihood of being met
allows project managers to plan
their projects with confidence.
The tool not only takes into

account the variability of the
development environment, but
also the diversity of its users. This
latest version allows users to cus-
tomize the interface according to
their personal preferences. This,
together with significantly
enhanced import and export fea-
tures, makes the task of project
management easier.
ESTIMATE Professional 4.0

injects knowledge of software pro-
ject behavioral characteristics into
the planning process. The tool
works hand in hand with
Microsoft Project and the like to
provide project managers and
team leaders with a full solution
for maintaining project control.

Software Productivity Centre Inc.
Price: US$695 for single-user license.
Phone: (604) 662-8181
Web Site: http://www.spc.ca
Enterprise One Unveils Jaadu 2.0

Enterprise One announced

Jaadu 2.0, the company’s Web
server VCL for Delphi.

Adding the TJaadu compo-
nent to an application allows it
to respond directly to requests
from Web browser clients.
Web-based applications will no
longer require the use of
Microsoft’s IIS server or any
other Web server. Because the
Web server is compiled directly
into the application, Jaadu
provides a high-performance
solution.
The programmer is free to use
all of Delphi’s RAD tools with-
out dealing with the DLL issues
associated with producing
ISAPI-based Web applications.
Using the Jaadu components, a
few lines of code is all that is
needed to fetch a set of data
from any database supported by
Delphi and use that data to pro-
duce formatted HTML output
based on a template the pro-
grammer supplies. These tem-
plates can be created using
Microsoft’s FrontPage product
or any other HTML editor,
allowing the developer to take
advantage of the latest HTML
tools for Jaadu-based projects.

Jaadu 2.0 includes components
for the automatic management
of user sessions. Also, there is a
TJaaduProcessor component that
greatly simplifies the building of
interactive Web sites.

Enterprise One
Price: From US$149 (Jaadu for Delphi Pro).
Phone: (888) 727-5281
Web Site: http://www.jaadu.com

http://www.pgcc.com/ic
http://www.spc.ca
http://www.jaadu.com

4 October 1999 Delphi Informant Magaz

Delphi
T O O L S

New Products
and Solutions
Pegasus Software Releases ImagN’ 4 with CadXpress

Pegasus Software released

ImagN’ 4, which offers developers
high-speed access to image files
from databases, the Internet,
intranets, and more. ImagN’ 4
adds image file support for WMF
and PNG, and AutoCAD 14 sup-
port for DXF and DWG image
files. The new CadXpress support
makes it easy to display
AutoCAD files from within a
browser, database, or other
Windows environment. ImagN’ 4
includes image features, such as
thumbnails, transparencies,
smoothing, improved anti-alias-
ing, rotate, zoom, crop, copy-to-
ine
clipboard, rubberbanding, and
more. ImagN’ 4 incorporates a
new TIF G3/G4 technology to its
display engine that should
increase the display time by at
least two-fold.

ImagN’ 4 includes a new anno-
tation/redlining engine that
enables developers to add annota-
tions to any image file, including
DXF and DWG files. These
annotations are displayed in lay-
ers, making it easy to password-
protect certain layers, or delete
unwanted annotations without
affecting the image or other anno-
tations. The developer has the
choice to add these annotations to
the image, or save them in an
independent file to be recovered
for later use.

ImagN’ 4 is currently available
as a DLL/VCL. ImagN’ is com-
patible with and has sample code
for Delphi, Visual Basic, IE,
Access, Visual FoxPro,
PowerBuilder, Clarion, C/C++,
and more.

Pegasus Software
Price: From US$299 to US$499.
Phone: (800) 875-7009 or
(813) 875-7575
Web Site: http://www.pegasustools.com
EvoCorp Releases ActiveIE Component Suite

EvoCorp Corporate Solutions

announced the release of the
ActiveIE Component Suite, a set
of native Delphi VCL objects and
components that provide a stable
environment for Internet Explorer
within a Delphi application.

ActiveIE is a safe replacement
where current TWebBrowser use
induces access violations,
exhausts system resources, or
hangs the system. Because it’s
built on Internet Explorer’s
ActiveX controls, ActiveIE
remains 100 percent compatible
with your current Web browser
framework, requiring minimal
changes to existing code.

EvoCorp Corporate Solutions
Price: US$30 per single user or developer
license.
E-Mail: sales@evocorp.com
Web Site: http://www.evocorp.com
Shaman Delivers Enterprise Shaman 3.2.3

Shaman Corp. announced

the implementation of Y2K
BIOS testing within Enterprise
Shaman 3.2.3. Enterprise
Shaman is an Internet-based
SRM solution that dramatical-
ly increases software reliability
throughout the corporate
enterprise.

Enterprise Shaman supplies
the IT manager with a com-
plete software and hardware
inventory of their network,
informs them of the Y2K com-
pliance status for their soft-
ware, reports on compliance
levels for each desktop’s BIOS,
and delivers Y2K software
updates as they are released by
software vendors.
The new BIOS testing feature

uses the industry standard tests
licensed from the National
Standards Testing Laboratory in
addition to a selection of tests and
features incorporated by Shaman.
The BIOS testing process consists
of an automated clock compati-
bility test, a progression test, a
leap year test, a suspect BIOS
test, and a reboot test.
The Shaman Y2K BIOS test is

an automated process and, once
complete, the results are copied
to the Shaman Scout, a software
agent that resides on the end
user’s machine that relays soft-
ware reliability information back
to the Shaman Enterprise Server.
The Shaman Enterprise Server is
a central repository located
behind the firewall that collects,
organizes, and reports on soft-
ware reliability information for
the network.
The Shaman Enterprise Server

automatically generates intranet
pages displaying a variety of soft-
ware reliability information for
the network. Through any
browser, an IT professional can
access the administrator’s page
that displays Y2K software com-
pliance, BIOS compliance, soft-
ware and hardware inventory,
bug information, available
updates, and upgrades for every
networked computer.

Shaman Corp.
Price: Contact Shaman for pricing.
Phone: (415) 241-9952
Web Site: http://www.shamancorp.com

http://www.pegasustools.com
http://www.evocorp.com
http://www.shamancorp.com

5 October 1999 Delphi Informant Magazi

News
L I N E

Oc tobe r 1999
Inprise Announces Borland Delphi 5

Philadelphia, PA — Inprise

Corp. announced Borland Delphi
5, a major new version of its rapid
application development tool for
Windows. Designed to help indi-
vidual and corporate developers
rapidly deliver Windows
applications, and extend those
applications to the Internet,
Delphi 5 simplifies the integration
of Windows and browser clients,
Web servers, middleware, and
back-end database systems.
Delphi 5 includes support for
ne
HTML 4 and XML.
Delphi 5 includes a number of

enhancements that allow organi-
zations to rapidly extend existing
systems and build new systems for
the Internet, increase the produc-
tivity of teams developing applica-
tions in larger corporations, and
reduce development cycle time.
These enhancements include
Internet Express, which speeds
Internet and XML development
by simplifying Data Distribution
and optimizing Data Exchange;
HTML 4 support to create full-
featured dynamic thin-clients for
the Web and allow rapid deploy-
ment to the Internet with full-fea-
tured and responsive client appli-
cations; MIDAS 3, which handles
the demands of Internet-based
applications; ADOExpress for
access to all types of information;
InterBase Express, a low-mainte-
nance, small-footprint relational
database; TeamSource, which lets
development teams manage
changes to source code; Borland
Translation Suite to quickly inter-
nationalize or localize applications
for new languages and cultures;
integrated development environ-
ment enhancements; and
advanced debugging tools.

Delphi 5 is scheduled to be
available in three editions:
Delphi 5 Enterprise, Delphi 5
Professional, and Delphi 5
Standard. Delphi 5 Enterprise
has an estimated street price
(ESP) of US$2,499 for new
users. Delphi 5 Professional
has an ESP of US$799. Delphi
5 Standard has an ESP of
US$99.95.

For more information, visit
http://www.borland.com/delphi.
Inprise Announces the Office of Chief Scientist

Philadelphia, PA — Inprise

Corp. announced the appoint-
ments of Chuck Jazdzewski,
Blake Stone, and Dr Andreas
Vogel to the Office of Chief
Scientist. Inprise organized the
Office of Chief Scientist, which
draws from key technical peo-
ple within the company, to
facilitate growth and shape the
technical direction for Inprise.

During his tenure at Inprise,
Jazdzewski made significant
contributions to many prod-
ucts and technologies, includ-
ing Delphi, JBuilder, OWL,
and Turbo Debugger. Prior to
his appointment, Jazdzewski
held positions as senior staff
engineer and C++Builder con-
tributing architect.

Blake Stone, a lead member of
Inprise’s JBuilder team since he
joined Inprise in 1997, was pro-
moted to senior staff engineer
and to the Office of Chief
Scientist. Stone has been an
instrumental architect and vision-
ary for Inprise’s JBuilder products,
including the upcoming JBuilder
for both the Sun Solaris and
Linux operating systems.

Dr Andreas Vogel has been a
key member of Inprise’s engineer-
ing team since 1997. Vogel works
on the Inprise Application Server
and other next-generation,
Internet-enabling enterprise
products. Before joining Inprise,
Vogel was a principal research
engineer with Distributed
Technology Centre in Brisbane,
Australia. He also co-authored
Java Programming with CORBA
[John Wiley & Sons, 1998], C++
Programming with CORBA [John
Wiley & Sons, 1999], and
Programming with Enterprise
JavaBeans, OTS, and JTS [John
Wiley & Sons, 1999].
Inprise Wins Four Awards at JavaOne

Scotts Valley, CA — Inprise

Corp. announced that three of its
key software products received
awards from leading Java publica-
tions. Java Developer’s Journal and
Java Pro magazine presented
Inprise with Reader’s Choice
Awards for its Inprise VisiBroker,
Inprise JBuilder, and Inprise
Application Server at the JavaOne
Conference and Exposition in
San Francisco.

Inprise’s VisiBroker won two
awards for Best Java Middleware
from the readers of Java
Developer’s Journal and Java Pro
magazine. Inprise JBuilder
received the Best Obfuscation
Tool Award in the Java Pro
Reader’s Choice Awards, and was
also named a finalist in the Best
Java Integrated Development
Environment category in Java
Developer’s Journal Reader’s
Choice Awards. In addition,
Inprise’s Application Server won
Java Pro’s Reader’s Choice Award
for Best Middleware EJB support.
Inprise Announces Commitment to Java

San Francisco, CA — Inprise

Corp. demonstrated support for
Sun Microsystems’ Java platform
with a series of announcements.
Inprise is shipping Borland
JBuilder 3, a new version of its of
visual development tools for creat-
ing platform-independent Java
business and database applica-
tions, as well as JDataStore, a
database written entirely in Java
for embedded, Web, and mobile
database applications. The com-
pany is also previewing its new
JBuilder for Solaris product, a
professional Java development
environment for the Solaris
Operating Environment, and
introducing its new EJB
(Enterprise JavaBeans) Server
technology, which will be includ-
ed in the next version of the
Inprise Application Server.

As of press time, JBuilder for
Solaris was scheduled to be avail-
able by the end of the calendar
year (1999). JBuilder for Linux is
scheduled to be available early
next year. The EJB Server tech-
nology will be a primary feature
in the next version of the Inprise
Application Server, which is
scheduled to be available by the
end of the year.
To learn more, visit http://www.

inprise.com.

http://www.borland.com/delphi
http://www.inprise.com
http://www.inprise.com

6 October 1999 Delphi Informant Maga

Columns & Rows
Delphi 5 / ADO

By Bill Todd

Figure 1: The Connection String
Delphi Does ADO
The New Way to Get to Data

Universal Data Access (UDA) is part of Microsoft’s strategy to provide fast access to
data in both relational and non-relational data stores. UDA provides a language-

independent, easy-to-use API for accessing data in any data source that has a UDA-
compatible driver. Like the BDE, this technology makes it easy to access data from multi-
ple data sources in a single program. UDA is implemented using Microsoft Data Access
Components (MDAC), which includes Active Data Objects (ADO), Open Database
Connectivity (ODBC), and OLE DB.
ADO is the application programming interface of
MDAC, and OLE DB is the system-level interface.
OLE DB defines a suite of COM interfaces that
provide all the data-access capabilities required by
any data source, from a relational database to a file
system. ODBC is included in MDAC for backward
compatibility. While existing ODBC drivers will
likely be replaced by OLE DB providers in the
future, the Microsoft OLE DB provider for ODBC
lets you use any ODBC driver via ADO now.
Although ADO is relatively new, OLE DB providers
are already available for Microsoft Access, Microsoft
SQL Server, and Oracle.

Another major advantage of ADO is that it will be
built into all future Microsoft operating systems,
including Windows 2000. While this means that
today you must install ADO on each PC that will
use ADO to access data, that task will vanish in
the future. If you want to learn more about UDA
and ADO, visit Microsoft’s data access Web site at
http://www.microsoft.com/data/default.htm. From
this page, you can download the ADO redistrib-
utable, which allows you to install ADO on
Windows 95/98/NT machines, or the MDAC
SDK, which contains complete documentation
and everything you need to develop your own
OLE DB providers. The SDK also includes the
ADO redistributable.

Everything you
need to use ADO
with Delphi is on
the Delphi 5 CD,
including
MDAC. Simply
go to the MDAC
folder on the
Delphi 5 CD and
run the installa- Editor.
zine
tion program, MDAC_TYP.EXE. The MDAC
installation program is a single .EXE file, so it’s easy
to install MDAC anywhere you need it. You can also
use the MDAC installation program to install
MDAC as part of your application’s installation if
you’re using an installation program that supports
calling .EXEs (InstallShield Express does not). If
you’re installing MDAC as part of your application’s
installation, you’ll want to use the “silent” mode to
suppress all screen displays. To install in silent mode,
use the command:

mdac_typ.exe /q:a /c:"setup.exe /qt"

For more information on installing MDAC,
including file lists and dependencies, see the
MDAC SDK documentation.

Using the ADOConnection and
ADODataSet Components
Delphi 5 has a suite of six new components that
provide complete ADO support and an easy way
to convert existing applications to ADO. To begin
building an ADO application, drop an
ADOConnection component on a form or data
module. The ADOConnection component is the
ADO equivalent of the BDE Database compo-
nent. It allows you to define a connection to a
database using its ConnectionString property.

Though it’s possible to build a connection string
manually, it is difficult. The ADO connection string
consists of a semicolon-delimited list of many para-
meters that can easily exceed 150 characters.
Fortunately, Microsoft provides a Connection String
Editor to make this job easier. To open the
Connection String Editor, shown in Figure 1, click
the ellipsis button in the ConnectionString property’s
edit box, or double-click on the component.

http://www.microsoft.com/data/default.htm

ies dialog box. Figure 3: The Connection page.

Figure 5: The All page.

Figure 6: Linked ADODataSet components.

Columns & Rows
The easiest way to build a con-
nection string is to click the
Build button to display the Data
Link Properties dialog box,
shown in Figure 2. The Provider
page lets you choose the driver
you want to use.

What you see on the
Connection page depends on
the provider you select. Figure 3
shows the Connection page
with the Microsoft Jet provider
selected, as well as the path to
an Access database entered.

The Advanced page, shown in
Figure 4, lets you specify the type
of access to the database, and the
All page (see Figure 5) lets you
edit any value in the connection
string. The All page is particular-
ly important if you’re connecting
to an Access database with user-
level security, because it’s the only
place you can enter the path to
the system database.

Once a value has been assigned
to the ConnectionString proper-
ty, you can set the Connected
property to True, at design or
run time, to connect to the
database. The ADOConnection
component also provides trans-
action support through its
BeginTrans, CommitTrans, and
RollbackTrans methods.

The ADODataSet component
is really the only one you need
to work with data because it
allows you to work directly with
a table, execute a SQL state-
ment, work with the result set,
or call a stored procedure. After
dropping an ADODataSet on a form or data module, the first step
is to set its Connection property. The Connection property’s drop-
down list will display all the available ADOConnection compo-
nents. Next, you need to set two related properties: CommandType
and CommandText. Set CommandType first because it determines
how CommandText is interpreted. You can set CommandType to
indicate that you want to connect directly to a table, call a stored
procedure, or enter a SQL statement as text. Choosing cmdTable as
the CommandType causes the drop-down list for the CommandText
property to display the tables in the database.

Once CommandType and CommandText have been set, using the
ADO components is exactly like working with the BDE dataset
components. Drop a DataSource component, a DBNavigator, and
some data-aware components on your form. Set the DataSet proper-
ty of the DataSource to the ADODataSet component, and set the
DataSource property of the navigator and data-aware controls.

Figure 2: The Data Link Propert

Figure 4: The Advanced page.
7 October 1999 Delphi Informant Magazine
Figure 6 shows a data module containing an ADOConnection,
two ADODataSet components, and two DataSource components
modeling a one-to-many relationship between two tables in an

Figure 7: The Field Link Designer.

Columns & Rows

Figure 8: The CommandText editor.
Access database. The master table is FailureAdoDs, and the detail
table is RepairTimeAdoDs. The datasets were linked by setting
the DataSource property of the detail dataset to the DataSource
component of the master dataset, then setting the MasterFields
property of the detail dataset.

The property editor for the MasterFields property is the Field Link
Designer, shown in Figure 7. To link the tables, select the master
and detail fields that define the relationship between the tables, and
click the Add button. In this example, the TrackingNumber field
links the tables. If the relation is defined by more than one field,
repeat the process of selecting the corresponding master and detail
fields and clicking the Add button.

To use an ADODataSet with a query result set, change the
CommandType to cmdText and enter the SQL statement in the
CommandText property. With the CommandType set to cmdText, the
property editor for the CommandText property changes to the
CommandText editor, shown in Figure 8.

The CommandText editor is a major improvement over the String
List Editor, used to edit SQL commands in previous versions of
Delphi. It provides a list of tables, and a button to add the table
name to the SQL statement, as well as a list of field names for the
selected table. Even if you don’t use the Add buttons, the list of table
and field names is very handy. Creating a one-to-many link between
8 October 1999 Delphi Informant Magazine
the ADODataSet components that execute SQL statements is exact-
ly the same as linking two BDE Query components. The SQL state-
ment for the detail dataset is:

SELECT *
FROM RepairTime
WHERE TrackingNumber = :TrackingNumber

The name of the parameter in the WHERE clause,
:TrackingNumber, matches the name of the primary key in the
master table exactly. The detail dataset’s DataSource property is
set to the master table’s DataSource component. Because these
two conditions have been met, each time the master dataset is
positioned to a new record, the detail dataset is automatically
closed, the new value from the master record is assigned to the
query parameter, and the detail dataset is opened to retrieve the
new set of detail records.

If you will execute a query more than once with different parame-
ters, set the ADODataSet’s Prepared property to True. This will
cause the query plan to be prepared and stored the first time the
query is executed. The stored plan will be used for each subsequent
execution. This eliminates the time required to parse and optimize
the query for all executions except the first.

To work with a stored procedure, set the CommandType to
cmdStoredProc, and choose the stored procedure from the
CommandText property’s drop-down list. Use the ADODataSet’s
Parameters property to assign values to input parameters and retrieve
values from output parameters.

Although you can do everything with the ADODataSet component,
Delphi 5 also includes the ADOTable, ADOQuery, and
ADOStoredProc components. These are designed to resemble the
BDE Table, Query, and StoredProc components as closely as possi-
ble to make converting an application to ADO easy.

Should You Convert to ADO?
Why convert an existing application from BDE to ADO? Neither
the native BDE Access driver nor the Access ODBC driver have
been ideal solutions for working with Access databases. Using the
ADO Jet driver eliminates these problems. With ADO, your Access
applications will correctly detect changes made by other users and
warn you when you try to post a record that has been changed by
another user since you read it. Also, Autoincrement fields work cor-
rectly with default values set for other fields.

The big advantage of using ADO with any database, however, is
that you are no longer dependent on Borland to update drivers
when new releases of the database appear. When a new version of
SQL Server or Oracle is released, the new ADO drivers should be
available at the same time, and should work because the database
vendor writes them.

The ADOCommand Component
In addition to the components for working with datasets, Delphi 5
also provides the ADOCommand component. The ADOCommand
component is most useful for executing commands that don’t return
a result set, such as SQL DDL (Data Definition Language) com-
mands, or a SQL DELETE query.

If you’re using one or more ADOConnection components, click
the drop-down button in the Connection property of the

Columns & Rows
ADOCommand component and select the connection you want
to use. The ADOCommand component, like all the ADO
dataset components, has its own ConnectionString property so
you don’t have to use an ADOConnection component. However,
in most cases, you’ll want to. The connection component pro-
vides a single central place to change the ConnectionString and
any other connection-related properties, as well as providing
transaction control methods.

The CommandText property of the ADOCommand component
contains the command you want to execute, and the
CommandType property determines whether CommandText is
interpreted as a text string, table name, or stored procedure
name. Set CommandType to ctText to execute a SQL statement. If
the SQL statement includes parameters, you can set their proper-
ties using the Parameters property editor of the ADOCommand
component. Although it makes no sense to use the
ADOCommand component to retrieve a dataset from a table,
query, or stored procedure, you can do it. The ADOCommand’s
Execute method returns the recordset generated by the command,
if any. You can assign the returned recordset to the RecordSet
property of an ADODataSet to view the records.

Cursor Types
If you’re accustomed to working with the BDE dataset compo-
nents, there are a number of things you’ll find different when
you use ADO. One of the most striking is the choice of four
different cursor types, which you can set using the CursorType
property of ADODataSet. The first is ctStatic, which provides a
static dataset that you cannot edit, and that will not show any
changes made by other users. A static cursor behaves like the
result set from a BDE Query component with its RequestLive
property set to False.

Choosing ctOpenForwardOnly provides a cursor that is identical to a
static cursor, except that you can only move forward through the
dataset. A forward-only cursor is very efficient and is ideal for gener-
ating reports. Setting the CursorType to ctDynamic provides a cursor
that allows you to navigate both forward and backward, as well as
see all additions, deletions, and changes made by other users. The
ctKeySet cursor type is identical to ctDynamic except that you can’t
see records added by other users.

ADO also provides a CursorLocation property with two possible
values: clUseClient and clUseServer. Client cursors are somewhat
similar to data provided to a MIDAS ClientDataSet, in that all
the data is downloaded to the client immediately. For a large
dataset, this can impose a significant penalty in time and memo-
ry usage. However, client cursors are almost always updateable,
support bookmarks, and allow scrolling in both directions. This
may not always be true with server cursors. The features available
with server cursors will depend on the database and the OLE DB
provider you’re using.

Transaction Isolation Levels
ADO supports the ANSI SQL-92 standard transaction isolation lev-
els, which are slightly different than those supported by the Delphi
Database component’s TransIsolation property. ADO supports the
following four isolation levels:

Read Uncommitted. Read Uncommitted is also called Dirty
Read or Browse isolation. At this level of isolation, a
transaction can see uncommitted changes made by other
transactions.
9 October 1999 Delphi Informant Magazine
Read Committed. A transaction at this level cannot see
uncommitted changes made by other transactions, but can
see committed changes. This means that reading the same
record twice may give two different values because the record
could have been changed by another transaction that has
committed. If a query is re-executed within the transaction,
it can also return new records that have been added by
another committed transaction that it did not see the first
time the query ran.
Repeatable Read. A Repeatable Read transaction will not see
any changes made by other transactions to records it has read,
even if the other transactions have committed. However, if a
query is re-executed within the transaction, it will see new
records added by other committed transactions.
Serializable. This isolation level requires that all concurrent
transactions interact in ways that produce the same result as
though the transactions executed sequentially. A transaction at
this level will not see either changed or newly inserted records
from other committed transactions.

Of course, the isolation level that you actually get when you choose
one of these options depends on the isolation levels that the data-
base you’re using supports.

Conclusion
ADO support is the single most important feature for database
application developers in Delphi 5. As Microsoft builds ADO
into its next generation of operating systems, you’ll no longer
have to install additional software with your application to
access databases. Perhaps more important is the range of data
that ADO will provide access to in the future. Looking beyond
relational databases, ADO will provide access to e-mail system
message stores, the file system on your hard disk, and any other
data store in a Microsoft product.

With the full power of Microsoft behind it, ADO will certainly
be adopted by other vendors with products that store data.
Finally, ADO relieves Borland of the burden of writing drivers.
That is a bigger benefit to you than to Borland because it means
you’ll get better drivers faster, as new versions of data storage
products ship. Best of all, because ADO drivers for Access, SQL
Server, and Oracle are already available, and because ADO
includes an ODBC provider, you can start using it right now. ∆

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is a Contributing Editor of Delphi
Informant, a co-author of four database-programming books, an author of over
60 articles, and a member of Team Borland, providing technical support on the
Borland Internet newsgroups. He is a frequent speaker at Borland Developer
Conferences in the US and Europe. Bill is also a nationally known trainer and has
taught Paradox and Delphi programming classes across the country and overseas.
He was an instructor on the 1995, 1996, and 1997 Borland/Softbite Delphi
World Tours. He can be reached at bill@dbginc.com, or (602) 802-0178.

10 October 1999 Delphi Informant Mag

OP Tech
Windows / Message Handlers / Events / Delphi

By David Wolfe

function Win
wParam, lP

begin
Result :=
case nMsg

WM_LBUTT
WM_LBUTT
WM_MOUSE
WM_SIZE
...
WM_QUIT

else
DefWindo

end;
end;

Figure 1: A w
Custom Message Handlers
Transforming Windows Messages into VCL Events

Delphi simplifies the process of handling Windows messages through the vehicle of
events. For example, getting a button located on an application’s main form to

respond to a Windows user input message such as WM_LBUTTONDOWN is as simple as
selecting the button by clicking on it, double-clicking the OnClick event on the Object
Inspector’s Event page, and entering the appropriate response code:
a

d
a

0
o
O
O
M

w

procedure TForm.ButtonClick(Sender: TObject);
begin

MessageDlg('Delphi is cool!',
mtInformation, [mbOk], 0);

end;

Using events is much easier than writing the
gigantic, window procedure case statements that
traditional Windows programming requires.
However, there are times when an application
must respond to a user action or system occur-
rence for which there is no existing event proper-
ty. This is when understanding the Visual
Component Library (VCL) architecture, the
Windows messaging system, and their interrela-
tion, becomes important.
zine

owProcedure(hWnd: THandle; nMsg: UINT;
ram: Cardinal): Cardinal; export; stdcall;

;
f
NDOWN : // Open a Child Window...
NUP : // End a Drag Drop Operation...
OVE : // Start a Drag Drop Operation...
 : // Repaint the Window...

 : MessageDlg('Adios ..', mtInformation,
[mbOk], 0);

Proc(hWNd, nMsg, wParam, lParam);

indow procedure prototype.
In this article, we’ll discus how Windows messages
work, and how they’re translated into VCL events.
Then we’ll use what we’ve learned to develop a
custom scroll box component that fires events in
response to scrolling occurrences, i.e.
WM_VSCROLL and WM_HSCROLL messages.

Windows Application Architecture
Windows is an event-driven, message-based oper-
ating system. Messages start as input events (e.g.
the user types, moves the mouse, or clicks a but-
ton), state changes (e.g. a window resizes or a sys-
tem font changes), or application broadcasts (e.g.
an application sends messages to its own or other
application windows). Windows then routes these
messages to an application in one of two ways:

a message can be posted to an application’s
message queue — a first in/first out structure
that temporarily stores messages, or
a message can be sent directly to an applica-
tion window for immediate processing.

Messages in the application’s message queue are
processed by the application’s WinMain function.
The WinMain function continually polls the mes-
sage queue, removing its topmost messages and
directing them toward specific windows until a
WM_QUIT message is received.

Each window in an application (in Windows, all
controls that can receive focus are windows) has

OP Tech
an associated window procedure. The window procedure deter-
mines how, and to which, messages an application window will
respond. Each time a window’s class (a structure that describes a
window’s properties and behavior) is registered through
RegisterClass or RegisterClassEx API calls, the class’ window proce-
dure is registered with the Windows kernel. When specific
instances of the classes are created through CreateWindow or
CreateWindowEx calls, messages routed to these windows are
processed by their associated window procedure.

Messages and the Window Procedure
A window procedure determines a window’s behavior. It’s tradition-
ally implemented as a large case statement with each case corre-
sponding to a specific message. The code associated with each case is
known as a message handler. Message handlers define how a window
will respond to different occurrences.

All window procedures must be functions that take four parame-
ters and return a 32-bit signed value; each of the function’s four
parameters corresponds to a field in a Windows message record.
Windows messages are dispatched to a window’s window proce-
dure by the WinMain procedure’s polling of the message queue,
or by a direct SendMessage call. A typical window procedure
might be structured like the function in Figure 1.
11 October 1999 Delphi Informant Magazine

TMessage = record
Msg: Cardinal;
case Integer of

0: (WParam: Longint;
LParam: Longint;
Result: Longint);

1: (WParamLo: Word;
WParamHi: Word;
LParamLo: Word;
LParamHi: Word;
ResultLo: Word;
ResultHi: Word);

end;

// Easy to understand.
TWMScroll = record

Msg: Cardinal;
ScrollCode: Smallint; { SB_xxxx }
Pos: Smallint;
ScrollBar: HWND;
Result: Longint;

end;

Figure 2: A generic message type definition from the
Messages unit.

WM_LBUTTONUP

Messages Message Queue Appl

WM_SIZE

WM_PAINT

Figure 3: The Windows application architecture.
A Windows message is a data record. Significant fields in a mes-
sage are nMsg, which identifies the specific message being sent,
and the parameter fields, wParam and lParam. Some examples of
message identifiers are WM_SIZE and WM_LBUTTONUP;
they determine which message handler is invoked when a win-
dow procedure is called. The “Param” fields contain relevant
information specific to a particular message identifier. For exam-
ple, if the message identifier is WM_LBUTTONDOWN,
wParam indicates which virtual keys are down, and lParam indi-
cates the position of the cursor.

The Messages unit in the \Delphi4\Source\RTL\Win\ directory
contains a list of message identifiers and message record types.
For each message type, Delphi defines a record type that gives
easy-to-understand names to the wParam and lParam fields.
Figure 2 contains a generic, easy-to-understand message type def-
inition from the Messages unit.

We’ve just covered a lot of ground in a short space. One of
Delphi’s strengths is that it hides much of the complexity of the
Windows messaging system from the application developer using
VCL events. Ultimately, however, an understanding of the
Windows application architecture is necessary for much serious
Windows programming (see Figure 3).

From Messages to Events
The mechanism with which Delphi implements the Windows appli-
cation architecture is the VCL’s message dispatch system.

Delphi classes that correspond to windows, child windows, or
common controls descend from the TWinControl class. It’s impor-
tant to remember that a Delphi class isn’t the same as a window
class. Window classes are records that are used as parameters for
certain API functions, such as RegisterClass. Delphi (or VCL)
classes are classes in the object-oriented sense; they are groups of
fields, methods, and properties that can be inherited, and they
can be polymorphic in their behavior.

TWinControl descendants include TForm, TButton, TEdit, and
TListBox. In effect, TWinControl classes are “wrappers” around
Windows common controls. TWinControl implements its associ-
ated window’s window procedure with the WndProc method. Any
time the window procedure of a TWinControl ’s associated win-
dow is called (through a SendMessage call, a PostMessage call, or
the application picking the topmost message from the message
queue), the WndProc method is invoked. The mechanism that
accomplishes this is complex, but the important thing to under-
stand is that when the window procedure of a window associated
Window Procedure

Message Handlers

ication

WinMain

// Level 1
procedure TControl.WMLButtonDown(

var Message: TWMLButtonDown);
begin

SendCancelMode(Self);
inherited;
if csCaptureMouse in ControlStyle then

MouseCapture := True;
if csClickEvents in ControlStyle then

Include(FControlState, csClicked);
DoMouseDown(Message, mbLeft, []);

end;

// Level 2
procedure TControl.DoMouseDown(var Message: TWMMouse;

Button: TMouseButton; Shift: TShiftState);
begin

if not (csNoStdEvents in ControlStyle) then
with Message do

MouseDown(Button, KeysToShiftState(Keys) + Shift,
XPos, YPos);

end;

// Level 3
procedure TControl.MouseDown(Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
begin

if Assigned(FOnMouseDown) then
FOnMouseDown(Self, Button, Shift, X, Y)

end;

Figure 5: Procedure calls resulting in the OnMouseDown
event being fired.

procedure TControl.WndProc(var Message: TMessage);
begin

if (csDesigning in ComponentState) then
...

if (Message.Msg >= WM_KEYFIRST) and
(Message.Msg <= WM_KEYLAST) then

...
if (Message.Msg >= WM_MOUSEFIRST) and

(Message.Msg <= WM_MOUSELAST) then
...

Dispatch(Message);
end;

// TWinControl (override)
procedure TWinControl.WndProc(var Message: TMessage);
var

Form: TCustomForm;
begin

case Message.Msg of
WM_SETFOCUS: ...
WM_KILLFOCUS: ...
WM_NCHITTEST: ...
WM_MOUSEFIRST..WM_MOUSELAST: ...
WM_KEYFIRST..WM_KEYLAST: ...
WM_CANCELMODE: ...

end;
inherited WndProc(Message);

end;

Figure 4: WndProc implementations in TControl.

OP Tech
with a TWinControl is called, the TWinControl ’s WndProc
method is fired.

The WndProc method is first defined in the TControl class, from
which TWinControl is a descendant. Figure 4 provides a skeleton
listing of WndProc’s implementation in the TControl, and the
TWinControl class definitions. For more specific information, see the
Controls unit in the \Delphi4\Source\VCL directory.

The significance of the TWinControl WndProc method skeleton is
that it calls its ancestor class’ (TControl) WndProc method, which in
turn calls the TObject.Dispatch method. Dispatch is the key player in
the VCL’s message dispatch system; it determines whether a message
is in the list of message handlers for a given object, or any of its
ancestors. If so, Dispatch calls the message handler associated with
the Msg field of its Message parameter. If not, it calls the
DefaultHandler method for the given object.

Message Handlers
A message handler is a method of a TControl, or one of its descen-
dants, which is defined by including a message directive in the
method’s declaration and is fired in response to a specific type of
Windows message:

procedure WMLButtonDown(var Message: TWMLButtonDown);
message WM_LBUTTONDOWN;

procedure WMSize(var Message: TWMSize); message WM_SIZE;
procedure WMMove(var Message: TWMMove); message WM_MOVE;

For virtually every Windows message, there is a corresponding
message-handling method in the VCL. Delphi message handlers
constitute the first of three levels of message processing that occur
after a Windows message has been picked up by the WndProc
method. Message handlers are typically named after the message
they’re designed to “handle,” for instance, WMLButtonDown.
12 October 1999 Delphi Informant Magazine
Message handlers ultimately call a second-level, “Do” method, e.g.
DoMouseDown. “Do” methods handle special case processing and
then call a third-level, virtual method, of which MouseDown is a
good example. Third-level handlers fire events. Figure 5 illustrates
the cascade of procedure calls that results in the OnMouseDown
event being fired.

Events
In Figure 5, we see the following code:

if Assigned(FOnMouseDown) then
FOnMouseDown(Self, Button, Shift, X, Y)

In the following example, FOnMouseDown points to the code
entered in the following block (generated by double-clicking the
OnMouseDown row on the Events page of the Object Inspector
when Form1 is the “inspected” object):

procedure TForm1.FormMouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
MessageDlg('Form1 clicked.', mtInformation, [mbOk], 0);

end;

The association between the FOnMouseDown method variable and
the OnMouseDown property occurs because events are properties.
FOnMouseDown is a private field of the TControl class, and it stores
the OnMouseDown method. If code is entered in the OnMouseDown
event property at design time, then FOnMouseDown points to the
entry point of that code block.

From an elementary standpoint, events are a way of linking an
occurrence to a block of Object Pascal code. From our perspec-

Figure 6: A demonstration of the new scroll box in use.

procedure TForm1.NewScrollBox1HorizontalScroll(
Sender: TObject; Pos: Smallint;
EventType: THScrollEventType);

var
Tmp : string;

begin
with ListBox1, Items do begin

case EventType of
hsLineLeft : Tmp := 'Line Left';
hsLineRight : Tmp := 'Line Right';
hsPageLeft : Tmp := 'Page Left';
hsPageRight : Tmp := 'Page Right';
hsThumbPos : Tmp := 'Horz ThumbPos';
hsThumbTrack : Tmp := 'Horz ThumbTrack';
hsLeft : Tmp := 'Left';
hsRight : Tmp := 'Right';
hsEndScroll : Tmp := 'End Horz Scroll';

end;
Add(Tmp + ' - ' + IntToStr(Pos));
ItemIndex := Count-1;

end;
end;

procedure TForm1.NewScrollBox1VerticalScroll(
Sender: TObject; Pos: Smallint;
EventType: TVScrollEventType);

var
Tmp : string;

begin
with ListBox1, Items do begin

case EventType of
vsLineUp : Tmp := 'Line Up';
vsLineDown : Tmp := 'Line Down';
vsPageUp : Tmp := 'Page Up';
vsPageDown : Tmp := 'Page Down';
vsThumbPos : Tmp := 'Vert ThumbPos';
vsThumbTrack : Tmp := 'Vert ThumbTrack';
vsTop : Tmp := 'Top';
vsBottom : Tmp := 'Bottom';
vsEndScroll : Tmp := 'End Vert Scroll';

end;
Add(Tmp + ' - ' + IntToStr(Pos));
ItemIndex := Count-1;

end;
end;

Figure 7: Handling the OnHorizontalScroll and
OnVerticalScroll events.

OP Tech
tive, events are method pointers that are indirectly invoked in the
course of handling a Windows message. Whichever perspective
one takes, the beauty of Delphi events is that they make respond-
ing to Windows messages (e.g. occurrences) an extraordinarily
easy and modular task.

In fact, for better or worse, they eliminate the functional need
for understanding the messaging basis of Windows application
architecture — that is, until it becomes necessary to respond to a
message for which there is no associated event. Let’s consider one
of these situations.

A ScrollBox with OnScroll Events
The TScrollbox component makes it easy to design applications
that require scrolling functionality. Simply place one on a form
and insert the necessary controls. There are many times when it’s
important to know whether the user is scrolling the scrollbox. For
example, when vertically scrolling a document in Microsoft Word,
a small hint window appears displaying the page of the document
corresponding to the current position of the vertical scrollbar.
Unfortunately, duplicating this type of functionality using a
TScrollbox is impossible because it lacks any OnScroll events. To
rectify this situation, we must create a new component, a
TScrollbox descendant.

Deriving TNewScrollBox
The complete code for this component is available in Listing
One (on page 14). (It’s also available for download; see end of
article for details.) Although going through the process of com-
ponent creation step by step is beyond the scope of this article,
let’s consider some of TNewScrollBox’s important features:

We’ve declared two message handlers: WMVScroll and
WMHScroll. Both have been declared with the message direc-
tive, and both are called when the TNewScrollBox receives a
WM_SCROLL message.
13 October 1999 Delphi Informant Magazine
We’ve declared two new event types: TVScrollEvent and
THScrollEvent (one each for Vertical and Horizontal), and two
private method variables of that type: FOnVScroll and
FOnHScroll.
We’ve declared two method properties (i.e. events),
OnVerticalScroll and OnHorizontalScroll, both of which publish
the private method variables FOnVScroll and FOnHScroll.
When WMVScroll or WMHScroll is called, it calls the VScroll or
HScroll method, which, in turn, fire the OnVerticalScroll or
OnHorizontalScroll event.

The WMVScroll and WMHScroll message handlers test for a special
condition relating to the use of the thumb bar. If the event type is either
ThumbPos or ThumbTrack, the incoming message record holds the cur-
rent position of the thumb bar while tracking (in the Pos field of a mes-
sage). If the event type is anything else, this Pos field isn’t used. To allow
our event to recognize the position while the thumb bar is being
dragged, we test to see if the event type is either of the “Thumb” types.
If it is, we send the message’s Pos value to our event handler. Otherwise,
we send the actual current position of the scrollbar.

message WM_HScroll;
protected

procedure VScroll(Pos: Integer;
EventType: TVScrollEventType); virtual;

procedure HScroll(Pos: Integer;
EventType: THScrollEventType); virtual;

public
constructor Create(AOwner: TComponent); override;

published
property OnVerticalScroll: TVScrollEvent

read FOnVScroll write FOnVScroll;
property OnHorizontalScroll: THScrollEvent

read FOnHScroll write FOnHScroll;
end;

procedure Register;

implementation

procedure TNewScrollBox.VScroll(Pos: Integer;
EventType: TVScrollEventType);

begin
if assigned(FOnVScroll) then

FOnVScroll(Self, Pos, EventType);
end;

procedure TNewScrollBox.HScroll(Pos: Integer;
EventType: THScrollEventType);

begin
if assigned(FOnHScroll) then

FOnHScroll(Self, Pos, EventType);
end;

procedure TNewScrollBox.WMVScroll(var Message: TWMScroll);
var

EventType : TVScrollEventType;
begin

inherited;
EventType := TVScrollEventType(Message.ScrollCode);
if EventType in [vsThumbPos, vsThumbTrack] then

VScroll(Message.Pos, EventType)
else

VScroll(VertScrollBar.Position, EventType)

OP Tech
To demonstrate the use of this new scroll box, I’ve put together a
quick demonstration (see Figure 6). It’s a NewScrollBox component
and a ListBox component placed on a form.

Inside the NewScrollBox component I put a TImage with a
graphic larger than the dimensions of the ScrollBox (so it would
show the scrollbars). Then I provided code in the
OnVerticalScroll and OnHorizontalScroll handlers, as shown in
Figure 7.

Conclusion
Understanding how Windows messages are transformed into
VCL events becomes important when it’s necessary to extend the
VCL. Even if component development isn’t the primary order of
business, understanding Windows application architecture, and
how it relates to the VCL, is a requirement for maturing both as
a Delphi developer specifically, and a Windows application
developer generally. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\OCT\DI9910DW.

David Wolfe is a programmer/analyst who designs and implements software for
the entertainment industry at Media-Services, Inc. When he is not architecting in
the UML or programming in Delphi, C++, or Smalltalk, he can be found
spending time with his fiancée, Molly, and watching old Kurosawa movies. You
can contact David at DavidW@Media-Services.Com.
14 October 1999 Delphi Informant Magazine

Begin Listing One — NewScrollBox.pas
unit NewScrollBox;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs;

type
TVScrollEventType = (vsLineUp, vsLineDown, vsPageUp,

vsPageDown, vsThumbPos, vsThumbTrack, vsTop, vsBottom,
vsEndScroll);

THScrollEventType = (hsLineLeft, hsLineRight, hsPageLeft,
hsPageRight, hsThumbPos, hsThumbTrack, hsLeft, hsRight,
hsEndScroll);

TVScrollEvent = procedure(Sender: TObject; Pos: SmallInt;
EventType: TVScrollEventType) of object;

THScrollEvent = procedure(Sender: TObject; Pos: SmallInt;
EventType: THScrollEventType) of object;

TNewScrollBox = class(TScrollBox)
private

FOnVScroll: TVScrollEvent;
FOnHScroll: THScrollEvent;
procedure WMVScroll(var Message: TWMScroll);

message WM_VScroll;
procedure WMHScroll(var Message: TWMScroll);

end;

procedure TNewScrollBox.WMHScroll(var Message: TWMScroll);
var

EventType : THScrollEventType;
begin

inherited;
EventType := THScrollEventType(Message.ScrollCode);
if EventType in [hsThumbPos, hsThumbTrack] then

HScroll(Message.Pos, EventType)
else

HScroll(HorzScrollBar.Position, EventType)
end;

constructor TNewScrollBox.Create(AOwner: TComponent);
begin

inherited;
FOnVScroll := nil;
FOnHScroll := nil;

end;

procedure Register;
begin

RegisterComponents('Samples', [TNewScrollBox]);
end;

End Listing One

15 October 1999 Delphi Informant Mag

Sound + Vision
Microsoft Agents / Delphi 3

By Eddie Shipman
Agents of Instruction
Using Microsoft Agent with Delphi

If you’ve seen the television commercial with a Microsoft executive talking with a par-
rot on his computer, you may have wondered when that technology was going to be

available to use in your own programs. With Microsoft’s
Agent SDK version 2.0, the time is now. Located at
http://msdn.microsoft.com/msagent/default.asp, the SDK
is a freely downloadable and royalty-free interface that
allows you to create interactive agents. In this article,
we’ll focus on installing the Agent controls and charac-
ters, and how to interact with the control using Delphi.
azine
Getting Started
To begin, you must download the Microsoft Agent core

components and at least one character file. If you want
to have character speech and voice recognition, a

text-to-speech engine and a speech recognition
engine must be downloaded, as well. You can
also download the speech control panel and
LISET, Microsoft’s Linguistic Information
Sound Information Tool, which allows you
to modify the settings for the speech engines
you install.

Microsoft supplies four characters on their
site: Genie, Merlin, Peedy the parrot, and

Robby the robot. If you plan on distributing
these agents with your application, you must

also get a copy of the Microsoft Agent
Licensing and Distribution agreement. Before

moving on, make a note of these files, which are
among those available for download on the

Microsoft site: Agent core components; characters;
speech recognition engine; L&H TruVoice TTS engine;

Visual Basic, Visual C++, and Java code samples; the
Microsoft character editor; and LISET.

To successfully install Agent on a target system, you
must ensure that the system has a recent version of the

http://msdn.microsoft.com/msagent/default.asp

Sound + Vision
Microsoft Visual C++ run time (Msvcrt.dll), Microsoft registra-
tion tool (Regsvr32.dll), and Microsoft COM DLLs. It’s best to
require that Microsoft Internet Explorer 3.02 (or later) be
installed to ensure that the necessary components are on the tar-
get system. When Agent is installed, it’s considered a system
component and can only be uninstalled by re-installing the oper-
ating system. It will be included with Windows 2000.
16 October 1999 Delphi Informant Magazine

Figure 1: The Import ActiveX Control dialog box.

Figure 2: Creating the new Peedy project.

procedure TForm1.Button1Click(Sender: TObject);
var

i : Integer;
begin

Agent1.Characters.Load('Peedy','Peedy.acs');
Peedy := Agent1.Characters.Character('Peedy');
Peedy.LanguageID := $409;
Peedy.Show(False);
for i := 0 to Memo1.Lines.Count-1 do

Peedy.Speak(Memo1.Lines[i],'');
Peedy.Speak('I'm Done!', '');
Peedy.Hide(False);
Agent1.Characters.UnLoad('Peedy');

end;

Figure 3: Code for the OnClick event.
Programming Agents
The first thing we need to do to use the Microsoft Agent control
in Delphi is to install the ActiveX component. Installation of the
Agent Core Components will auto-register the Agent ActiveX
Control. Then we have to install the character file(s). I used
Delphi 3 for the examples in this article. And I decided to use
Peedy because of the commercial.

From the Component menu, select Import ActiveX Control. Scroll
down until you see Microsoft Agent Control 2.0. Click the Install but-
ton (see Figure 1). The control will be installed on the ActiveX
page of the Component palette.

Now that we have the Agent installed, create a new project and
place an Agent component, a Memo component, and a Button
component on the form (see Figure 2).

In the OnFormShow event handler, write some code to create and
activate the Agent control:

var
Form1 : TForm1;
Peedy : IAgentCtlCharacterEx;

implementation

{$R *.DFM}

procedure TForm1.FormShow(Sender: TObject);
begin

Agent1.Connected := True;
end;

Note that if you don’t set the Agent’s Connected property to True,
you’ll receive a run-time error indicating that Agent was unable
to start.

In the button’s OnClick event, place the code shown in
Figure 3.

Compile and run the project, write some lines into the
memo field, click the Say It! button, and Peedy will fly
onto the screen and speak the words you’ve typed.

But, where did he go? The character was unloaded
before he got a chance to speak, because the speak
and play requests are played asynchronously while
your code continues to execute. One thing we need to
be aware of is the user pressing the Say It! button
again while the character is loaded and running its
// Turn off automatic error raising;
// be sure to turn it back on.
Agent1.RaiseRequestErrors := False;
// Let the load method raise the error
// through the status property.
LoadRequest := Agent1.Characters.Load('Peedy','peedy.acs');
if LoadRequest.Status <> 0 then begin

// Unsuccessful Load.
MessageDlg('The character "Peedy" is already loaded.' +

Chr(13) + 'Check for previous Load method calls.' +
Chr(13) + 'The LoadRequest Status was:' +
IntToStr(LoadRequest.Status), mtError, [mbOK], 0);

Exit;
end;

Figure 4: LoadRequest object to catch an error.

Sound + Vision

procedure TForm1.Agent1RequestComplete(Sender: TObject;
Request: IDispatch);

var
Response : string;
i : Integer;
p : TPoint;

begin
if Request = HideRequest1 then begin

Agent1.Characters.UnLoad('Genie');
WaitRequest1 := Peedy.Speak(

'Please enter your name in the box below.', '');
end;
if Request = HideRequest2 then begin

Agent1.Characters.UnLoad('Peedy');
Request := nil;
Close;

end;
if Request = WaitRequest1 then begin

Peedy.Play('GestureDown');
Response := InputBox('Input Name',

'Please enter your name.', 'You don't have a name?');
Peedy.Play('RestPose');
if Pos('You don't have a name?', Response) = 0 then

WaitRequest2 := Peedy.Speak(
'Thank you, your name is ' + Response + '.','')

else
begin

Peedy.Play('Uncertain');
WaitRequest2 :=

Peedy.Speak('Hey, don't you have a name?','')
end;

end;
if Request = WaitRequest2 then begin

Peedy.Speak(
'Select Yes or No to make me click the other button',
'');
WaitRequest3 := Peedy.Play('GestureDown');

end;
if Request = WaitRequest3 then begin

P := ScreenToClient(Point(Peedy.Top+Peedy.Height+50,
Peedy.Left+Peedy.Width+40));

i := MessageDlgPos(
'Do you want me to click the button?',
mtConfirmation, [mbYes, mbNo], 0, P.X, P.Y);

if i = mrYes then
Button2.Click;
animations. Using a try..except block, we can catch the error if
the user clicks the button again:

try
Agent1.Characters.Load('Peedy','peedy.acs');

except
on E: Exception do begin

MessageDlg(E.Message, mtError, [mbOK], 0);
Exit;

end;
end;

Another way to catch the error is to use a LoadRequest object (see
Figure 4).

Synchronizing Character Animations
We must track the requests to the control in order to synchronize
the control with the code. Now, create an OnRequestComplete
procedure in the Object Inspector and move the unload code
into it:

procedure TForm1.Agent1RequestComplete(Sender: TObject;
Request: IDispatch);

begin
if Request = MyRequest then

Agent1.Characters.Unload(AgentName);
end;

The MyRequest object is defined as:

MyRequest: IAgentCtlRequest;

Now you’ll be able to see Peedy on the screen.

There is another way to control the synchronization of the ani-
mations: through the use of bookmarks. If we were to place
another call to speak after looping through the memo and format
it like this:

Peedy.Speak('I'm Done!\mrk=1\', '');

we could use the control’s OnBookMark method to control what was
going on:

procedure TForm1.Agent1Bookmark(Sender: TObject;
BookmarkID: Integer);

begin
if BookMarkID = 1 then

ShowMessage('I'm Done');
end;

This will show a message box after he is finished speaking.
17 October 1999 Delphi Informant Magazine

Request1 := Peedy.Speak(Knock knock','');
Genie.Wait(Request1);
Request2 := Genie.Speak('Who's there?','');
Peedy.Wait(Request2);
Request1 := Peedy.Speak('Orange.','');
Genie.Wait(Request1);
Request2 := Genie.Speak('Orange who?','');
Peedy.Wait(Request2);
Request1 := Peedy.Speak(

'Orange you glad you didn't tell this awful joke?','');
Genie.Wait(Request1);

Figure 5: Genie and Peedy interacting.
There are other tags that can be used to modify speech output in the
Speak method. You can use these tags to change the characteristics of
the output expression of the character. From the Microsoft docu-
mentation, Speech tags follow this format:

All tags begin and end with a backslash character (\).
The single backslash character is not enabled within a tag. To
include a backslash character in a text parameter of a tag, use a
double backslash (\\).
Tags are case-insensitive, e.g. \pit\ is the same as \PIT\.
Tags are whitespace-dependent, e.g. \Rst\ is not the same as \ Rst \.
else
WaitRequest4 := Peedy.Speak(

'You selected "No" so I did not click ' +
'the button.','');

end;
if Request = WaitRequest4 then begin

Peedy.Play('RestPose');
Peedy.Play('Wave');
Peedy.Speak('Goodbye, thanks for trying Microsoft ' +

'Agent Technologies','');
HideRequest2 := Peedy.Hide(False);

end;
end;

Figure 6: The OnRequestComplete event.

Figure 7: Output options in the Advanced Character Options
dialog box.

Sound + Vision
For example:

// Peedy Whispers.
Peedy.Speak('\Chr="Whisper"\I'm Whispering', '');

There are many other tags that can be used to modify the character-
istics of the speech output. Please reference the document,
SpeechOutputTags.doc, for more information. It’s included in the
Agent documentation, available at http://msdn.microsoft.com/
workshop/imedia/agent/agentdevdl.asp#allzip.

Moving the Character
So you want to move the character around — maybe place him on
top of your form? This is done with the MoveTo method. Place the
following code before Peedy.Show:

Peedy.MoveTo(Form1.Left, Form1.Top-Peedy.Height, 0);

It appears that placement isn’t as straightforward as it may seem. You
can get the dimensions of the character with the Height and Width
properties, but it doesn’t seem to place the character directly on the
top-left edge of the form. There seems to be a transparent border
around some of the characters. You can also have the character gesture
at any portion of the screen. This code makes him gesture at the
Button1 component. GestureAt takes screen coordinates, so be sure to
convert them with ClientToScreen:

p := ClientToScreen(Point(Memo1.Left, Memo1.Top));
Peedy.GestureAt(p.x, p.Y);

There are many animations included with these characters. All of
the animations for the Microsoft-supplied characters are docu-
mented in the Agent documentation (file name, alldocs.zip) on
Microsoft’s Agent site. To get the animations to play, use the
Play method:

Peedy.Play('Greet'); // "Peedy" Bows.

Interacting with Other Agents
Agent allows you to load more than one character. These loaded
characters can interact with each other, although you’re the one con-
trolling the interaction. For instance, you can have more than one
character loaded with each character doing animations and respond-
ing to the other, as well as to the user. You use Request objects along
with the Wait method to accomplish this interaction.

For now, we’ll load Peedy and Genie and have Genie wait and respond
to something Peedy says (see Figure 5). Any animations pending in
Peedy’s queue before Genie’s Wait method will play without interruption.

Interacting with Users
There are several ways for the character to interact with the user: input
balloons, input boxes, message dialog boxes, and speech recognition.
The speech recognition uses a Command object for the program, or
Agent to react to the user interaction. There is also a third-party exten-
sion to Agent called HTMLBalloons written by Costas Andriotis. It
allows the use of input balloons similar to the ones used with Office
Assistants, and can be obtained at http://www.agentstation.com.

Let’s demonstrate how to use the input boxes and message dialog
boxes to interact with the user. The OnRequestComplete event is used
in this example because of the asynchronous mode of the actions of
the agent characters (see Figure 6).
18 October 1999 Delphi Informant Magazine
The most common way to interact with a user is through speech
recognition. If you haven’t seen the commercial, Peedy asks the exec-
utive if he wants to schedule a meeting in his Outlook calendar. The
executive gives the command for Peedy: “Sure.” Peedy replies, “How
about Saturday, 2:00 PM?” The executive says, “OK.” Peedy then
flies away into the background. This is done through the use of the
Commands object of the character.

First, let’s define a couple of simple commands. One will tell Peedy
to calculate; when the Agent control processes the command, he’ll
play the Process animation in which he pulls out a calculator and
starts calculating. The commands will also appear in the popup
menu that appears when you right-click on the character or his
tray icon. Be aware that you cannot use V or H as accelerators
for your command captions, because these are accelerators for the
default menu items when you have a command defined.

The format to add a Command object to the character’s com-
mands collection is:

Commands.Add(const Name: WideString;
Caption, Voice, Enabled, Visible: OleVariant);

In our case, to define a command to calculate, we use this code:

Peedy.Commands.Add('Calculate', '&Calculate', 'calculate',
True, True);

We also added a command to bring up the character’s property sheet:

Peedy.Commands.Add('Property Sheet',

'&Show Property Sheet', 'property', True, True);

This property sheet allows us to change the key to press when we
want the character to begin listening to commands, and other things
pertaining to our character (see Figures 7 and 8).

http://msdn.microsoft.com/workshop/imedia/agent/agentdevdl.asp#allzip
http://msdn.microsoft.com/workshop/imedia/agent/agentdevdl.asp#allzip
http://www.agentstation.com

Figure 9: A tip box signifies Peedy is in listening mode.

procedure TForm1.Agent1Command(Sender: TObject;
UserInput: IDispatch);

var
VoiceStr : string;

begin
// Get the actual word spoken in the string, VoiceStr.
VoiceStr := IAgentCtlUserInput(UserInput).Voice;
if IAgentCtlUserInput(UserInput).Name = 'Calculate' then

begin
Listen2 := Peedy.Speak('I heard you say ' +

VoiceStr,'');
Peedy.Listen(True);

end;
if IAgentCtlUserInput(UserInput).Name = 'Goodbye' then

begin
Peedy.Speak ('I heard you say '+ VoiceStr,'');
Peedy.Play ('Wave');
Peedy.Speak('Goodbye','');
HideRequest2 := Peedy.Hide(False);

end;
end;

Figure 10: Code for listening for specific voice commands.

Figure 8: Determining speech characteristics in the Advanced
Character Options dialog box.

Sound + Vision
When selecting these commands from the pop-up menu, it’s
processed exactly as it would be if the character were in listening
mode. For the character to begin listening to your commands,
we must place him in listening mode. This is done with the
Listen method:

Peedy.Listen(True);

Of course, you’ll need a microphone attached to your sound card for
the speech recognition engine to listen to your commands. In the
19 October 1999 Delphi Informant Magazine
following code, we’ll add the commands, and then play an anima-
tion that will trigger the Listen1 request when it’s done:

{ Both commands have alternate voice commands. The
character will perform the same operation when hearing
either of the commands; e.g. (calculate|figure) if you
say "calculate" or "figure" it means the same thing to
the character. }

Peedy.Commands.Add('Calculate', 'C&alculate',
'(calculate|figure)',True,True);

Peedy.Commands.Add('Goodbye', '&Goodbye',
'(goodbye | bye)',True, True);

Peedy.Speak('Now you can speak and I will listen','');
Listen1 := Peedy.Play('Alert');

In the Listen1 request, we will set Peedy to listening mode:

if Request = Listen1 then
Peedy.Listen(True);

You’ll see a listening tip box come up when the character is in listen-
ing mode (see Figure 9).

In the Agent1Command procedure, we’ll listen for the specific voice
commands (see Figure 10).

Conclusion
Microsoft Agent technology is an exciting new option in user interface
design. With these new techniques, you can build totally interactive
CBTs, Web sites, demonstrations, and other programs. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\OCT\DI9910ES.

Eddie is a Senior Delphi Developer at Academic Software, Inc. in Austin, TX. He
lives in Round Rock with his wife Vickie and pet Pomeranian, Tasha. He can be
reached via e-mail at shipman@inetport.com.

In Development
Open Tools API / Version Control / Delphi 2, 3, 4

By Keith Wood

20 October 1999 Delphi Informant Maga
Open Tools at Work
A Delphi Add-in to Automate Module Versioning

When working on a moderate to large project, it quickly becomes apparent that we
need to keep track of the different versions of the modules being developed. For

example, we must ensure the latest version is the one released to the testers, and ulti-
mately the user. And during testing, we need to know which version of each module is
being used so we can trace any errors.
Delphi provides built-in hooks for third-party
version-control systems bundled with its
Client/Server editions. But, what if we want
something simpler, like a label on each form that
we update each time we save the unit? We can
create a Delphi add-in that automates this task
for us, relieving us of the burden of remembering
to perform this change each time.
zine
Note: The code demonstrated in this article was
written using Delphi 2 and 3. However, it also
compiles correctly in Delphi 4. Its Delphi 5 com-
patibility was unknown at press time.

Versioning Add-in
The add-in we create integrates with the Delphi
IDE through interactions with Delphi’s
ToolServices object, which is available to experts
and add-ins. From this object, we gain access to

Delphi’s menu structure, we are told about mod-
ules that are opened and closed, and we can
alter properties of components on forms.

At the simplest level, we want the add-in to
update the text of a label each time the
module is saved. To do this, we need to
keep track of which modules are open and

when they are being saved. We
can then access the label com-
ponent, determine its current
value, and increment it before
writing it back.

To make the add-in more
useful, let’s expand the
requirements to update a
specified property of a
named component, rather
than just hard-coding
lblVersion.Caption. Let’s also
allow the version label to
be either an incrementing

Menu

Registry

Configuration form

Add-I

Versio

Modul

Figure 1: Structure of the versioning add-in.

{ Create a project notifier and install it.
Also add menu item. }

constructor TVersionAddIn.Create;
var

imnMainMenu: TIMainMenuIntf;
imiMenuItem, imiParentMenu: TIMenuItemIntf;

begin
inherited Create;
{ Add menu item for versioning options. }
imnMainMenu := ToolServices.GetMainMenu;
if imnMainMenu <> nil then

try
imiMenuItem :=

imnMainMenu.FindMenuItem('ProjectOptionsItem');
if imiMenuItem <> nil then

try
imiParentMenu := imiMenuItem.GetParent;
if imiParentMenu <> nil then

try
imiOptions := imiParentMenu.InsertItem(

imiMenuItem.GetIndex + 1,
'&Versioning Options...',
'KWood_VersionAddIn', '', 0, 0, 0,
[mfVisible], imiOptionsClick);

finally
imiParentMenu.Free;

end;
finally

imiMenuItem.Free;
end;

finally
imnMainMenu.Free;

end;
{ Install notifier. }
ainVersion := TVersionAddInNotifier.Create(imiOptions);
if not ToolServices.AddNotifier(ainVersion) then

MessageDlg('Couldn't load'#13#10 + GetName,
mtError, [mbOK], 0);

end;

Figure 2: Constructing the add-in interfaces.

In Development
number, or the date and time the module was saved. Finally, let’s
have the user confirm each change to the version, or have the
add-in automatically update it whenever the module is saved.
Finally, it would be nice if the whole system could be customized
at the project level; we may want to have different schemes in
different projects, with the ability to turn it all off for certain
applications.

Creating the Add-in
The add-in is created by subclassing the TIExpert class. We over-
ride the basic information providing methods of this class to sup-
ply the name of the new add-in, its unique identifying string,
and its style. The latter is set to esAddIn, indicating that we will
21 October 1999 Delphi Informant Magazine
control all interaction with the add-in.
Normally, Delphi would set up an interface to
the expert for us, based on its style (through the
Object Repository for form and project experts,
and through the Help menu for standard
experts).

Our add-in has a series of interacting objects
behind the scenes to implement all the function-
ality required. These are shown in Figure 1. The
first entry point is via the menu to the configu-
ration form. This allows the user to customize
the add-in for each project, with the options
being saved in the Windows registry.

The second entry point is through the add-in notifier that tracks
changes to the current project within Delphi. It reads the settings
for the project from the registry and manages a series of version
module and module notifier objects that monitor the activities of
individual modules within the project. We set up both of these
entry points in the constructor of the add-in, as demonstrated in
Figure 2.

For the menu item, we use the GetMainMenu function of the
ToolServices object to provide access to Delphi’s main menu. We
then locate the position in the menu where we want our item to
appear. In our case, this is after the Project | Options item.

The FindMenuItem function gets us to the required menu item,
but only if we know the name of the menu item. Some of the
standard menu item names are shown in Figure 3. From here, we
retrieve a reference to the Project menu itself with the GetParent
function. Next, we insert our new menu item immediately after
the “Versioning Options” item with the InsertItem function.
Finally, don’t forget to free all the interfaces that we’ve acquired.

We need to keep a reference to this new menu item, so it can be
freed when the expert is destroyed. The result of the user selecting
this new item is a call to the imiOptionsClick method, which we
passed as one of the parameters to its construction. This procedure
simply creates the configuration form, then displays it and processes
any changes made through it.

The add-in notifier, which we create and load, handles the other
side of our add-in’s interactions. This notifier keeps track of the
options set by the user for the current project and is informed by
Delphi when projects and/or modules are opened or closed.

Configuration
Selecting the Versioning Options menu item invokes the configuration
form (see Figure 4). This allows the user to customize how the add-
in functions with their project.

The options exist at two levels: a global default and project-specific
values. When a project is opened, the add-in tries to find its partic-
ular settings. If these are not available, the defaults are used instead.
The options are saved in the registry under the key
\Software\KWood\Version Add-In. Beneath this are keys for the
global values (Defaults) and each project by name. To toggle
between the two levels, we use a checkbox at the top of the form.

At each level, we can specify the name of the component and its
property to be updated. This property must be able to accept the

n Notifier

n Module

e Notifier

In Development
version label to be maintained. Two types
of labels can be supplied: an integer or a
date and time. Further checkboxes allow
the user to enable or disable the actions
of the add-in for this project as a whole
and to automatically update the version,
or to ask the user to confirm the change
for each module.

When the OK button is pressed, any
changes are written back to the registry,
and are updated in the add-in notifier
that is tracking the current project.

Project Tracking
The add-in notifier is informed when a
project is opened or closed. Upon open-
ing a new project, the notifier retrieves its
name and uses this to load the versioning
options applicable to it from the registry.
It also enables the Options menu item
with the following statement:

imiOptions.SetFlags([mfEnabled],

[mfEnabled]);

This method allows us to alter the menu
flags specified in the first parameter and
to set them to the values from the second
parameter. All other flags retain their
original values.

Upon closing a project, the notifier frees
all the notifiers it has set up to monitor
the individual modules, clears the project
name, and disables the menu item.

When a file is opened or added to the
project, the add-in notifier creates an
object and associated module notifier to
track the new module’s activities. These
are added to a list of open modules. Of
course, as the file is closed or removed
from the project, these items are
destroyed.

Module Tracking
For each module opened, we want to be
informed when the user saves it. At this
point, we can update the version label as
requested. To do this, we use the
TIModuleNotifier class and derive a new
subclass from it to implement our
actions. Once created, the notifier must
be associated with the particular module
to monitor. To achieve this, we call the
module interface’s AddNotifier method.
22 October 1999 Delphi Informant Magazine
{ It does nothing, but we must override this abstract method. }
procedure TVersionModuleNotifier.ComponentRenamed(

ComponentHandle: Pointer; const OldName, NewName: string);
begin

{ Do nothing. }
end;
Before the notifier is destroyed, we must
remove it from that interface with the RemoveNotifier method.

The TIModuleNotifier class declares two abstract methods. We’re
interested in the Notify method, but we still need to supply code for
the ComponentRenamed method, even though it does nothing:
Figure 3: Selected Delphi menu items.

Caption VCL Menu Object Version

&File FileMenu
&New... FileNewItem
New Applica&tion FileNewApplicationItem
New &Form FileNewFormItem
New Data &Module FileNewDataModuleItem
&Print... FilePrintItem
E&xit FileExitItem

&Edit EditMenu
&Undelete EditUndoItem
&Redo EditRedoItem
Cu&t EditCutItem
&Copy EditCopyItem
&Paste EditPasteItem
&Delete EditDeleteItem
Se&lect All EditSelectAll

&Search SearchMenu
&Find... SearchFindItem
&Replace... SearchReplaceItem

&View ViewsMenu
&Project Manager ViewPrjMgrItem
Pro&ject Source ViewPrjSourceItem

&Project ProjectMenu
&Options... ProjectOptionsItem

&Run RunMenu
&Run RunRunItem

&Component ComponentMenu
&New... ComponentNewItem 2
&New Component... ComponentNewItem 3
&Install... ComponentInstallItem 2
&Install Component... AddtoPackage1 3
Create Component &Template… ComponentInstallCompositeItem 3
Open &Library... ComponentOpenLibraryItem 2
&Rebuild Library ComponentRebuildItem 2
Install &Packages… InstallPackagesItem 3
Configure &Palette... ComponentPaletteItem

&Database DatabaseMenu
&Explore Borland_DbExplorerMenu
&SQL Monitor Borland_SQLMonitorMenu
&Form Expert... Borland_FormExpertMenu 2
&Form Wizard... Borland_FormExpertMenu 3

&Tools ToolsMenu
&Options... ToolsOptionsItem 2
Environment &Options... ToolsOptionsItem 3
&Repository... ToolsGalleryItem
&Tools... ToolsToolsItem 2
Configure &Tools... ToolsToolsItem 3

&Help HelpMenu
&Help Topics HelpContentsItem 2
&Contents HelpContentsItem 3
&Topic Search HelpTopicSearchItem 2
&Keyword Search HelpTopicSearchItem 3
&How to Use Help HelpUsingHelpItem
&Windows API HelpAPIItem
&About... HelpAboutItem

In Development
The Notify
method
can tell us
many
things
about its
attached
module.
These
include sig-
nals when
the module
is renamed
or deleted,
when its
code editor

or form designer are selected, when the code or form are modified,
and when the module is being saved. See the EditIntf unit in the
Source\ToolsAPI directory for the appropriate values to check.

Of course, the only notification we want to know about is when the
module is about to be saved, i.e. ncBeforeSave. We must act on the
“before save” so that any changes we make are written to the disk.
First, we check whether versioning has been enabled for this project.
If it is hasn’t, we do nothing.

Otherwise, we retrieve an interface to the form itself using the
GetFormInterface method of the module interface object. Then,
we search for the component specified by the user for this project
with the FindComponent function. If we find such a component,
we then attempt to update the named property, as shown in
Listing One (on page 24).

When versioning by a number, we must first read the current
value from the component before incrementing it and writing it
out again. We can check the type of the property with the
GetPropTypeByName method to ensure that we can set the version
label. Then we can obtain the current value through the
GetPropValueByName method. If it’s a string or variant property,
we convert the value to a number, defaulting to zero if unsuccess-
ful. Confirmation of the change is requested if the user hasn’t
selected automatic updates during configuration. Finally, we
increment the value and set it with the SetPropByName method,
converting back to a string if necessary.

Versioning by dates is a little simpler. We still retrieve the current
date and time label for use in the confirmation dialog box, but we
don’t have to worry about different formats for the property.

After updating the new version label, Delphi continues and saves the
module and new label to disk. Our versioning task has been com-
pleted with minimal interaction from the user. Appropriate error
handling and checking in the code means that the lack of a compo-
nent with the specified name doesn’t disrupt the program flow.
Thus, not all modules within a project need to be versioned.

The resulting version label could be invisible by default and would
only be shown when a certain action occurred, such as pressing a
particular key combination or a mouse click in a particular spot.
Alternately, a conditional compile section, such as the following:

{ $IFDEF VERSIONING }
lblVersion.Visible := True;
{ $ENDIF }

Figure 4: Configuring the versioning expert.
23 October 1999 Delphi Informant Magazine
can be set up, based on a flag defined at compilation time. Then,
for a testing version of the application, under the Project |

Options menu item, on the Directories/Conditionals tab, you
would add VERSIONING to the list of Conditional defines
before doing a complete recompile with the Project | Build All

menu item. For a user release, you would remove this value from
the list before compiling.

Installation
Installing the versioning add-in into Delphi 3 involves the fol-
lowing steps:
1) Close Delphi.
2) Copy the versioning add-in DLL to an appropriate directory,

e.g. \Delphi\Bin.
3) Start the Registry Editor by selecting Run from the Windows 95

Start menu, then entering regedit.
4) Under the key HKEY_CURRENT_USER\Software\Borland\

Delphi\3.0\Experts, add a new string value by right-clicking and
selecting New | String Value. Enter its name as VersAdd.

5) Modify the value for this entry by right-clicking it and select-
ing Modify. Enter the full path and file name for the DLL
from step 2.

6) Close the Registry Editor and restart Delphi. The Versioning

Options menu item should appear on the Project menu to show
the add-in was installed correctly.

The same steps apply for Delphi 2, except that the registry key is
2.0 instead of 3.0. Thereafter, you can configure the add-in to
work with the component and property you prefer. Add one of
these components to your form, rename it appropriately, and
save the unit. The property should be updated with the new ver-
sion for this unit.

Conclusion
Although it’s nowhere near a full version control system, the add-
in described here shows how we can automate tasks within the
Delphi IDE through the use of its Open Tools API. For this utili-
ty, we dealt with menu interfaces, with project and module noti-
fiers, with module and form interfaces, and finally with compo-
nent interfaces. All this allows us to track what is happening
inside Delphi and to intervene at the appropriate points for our
purposes. Our add-in maintains a designated property of a speci-
fied component with minimal action from ourselves. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\OCT\DI9910KW.

Keith Wood is an analyst/programmer with CCSC, based in Atlanta. He started
using Borland’s products with Turbo Pascal on a CP/M machine. He has enjoyed
exploring Delphi since it first appeared, and works with it occasionally. You can
reach him via e-mail at kwood@ccsc.com.

In Development
Begin Listing One — Updating the version label on a
module save
{ When notified of file being saved, look for specified

component. If found ask whether to increment and save. }
procedure TVersionModuleNotifier.Notify(

NotifyCode: TNotifyCode);
var

cpiComponent: TIComponentInterface;

{ Update component's property as a number. }
procedure UpdateAsNumber;
var

sVersion: string;
iVersion, iVersInc: Integer;
iPropType: TPropertyType;

begin
{ Check property type. }
iPropType := cpiComponent.GetPropTypeByName(

vmdModule.Notifier.PropertyName);
if not (iPropType in [ptInteger, ptFloat, ptString,

ptLString, ptLWString, ptVariant]) then
begin

MessageDlg('Invalid property type for ' +
vmdModule.Notifier.ComponentName + '.' +
vmdModule.Notifier.PropertyName + ' -'#13#10 +
'must be string, numeric or variant for ' +
'versioning', mtError, [mbOK], 0);

Exit;
end;

{ Extract current value. }
try

if iPropType in [ptInteger, ptFloat] then
cpiComponent.GetPropValueByName(

vmdModule.Notifier.PropertyName, iVersion)
else

begin
cpiComponent.GetPropValueByName(

vmdModule.Notifier.PropertyName, sVersion);
iVersion := StrToInt(sVersion);

end;
except

iVersion := 0;
end;
iVersInc := iVersion + 1;
{ Update to new value? }
if vmdModule.Notifier.AutoUpdate or

(MessageDlg('Update version of file ' +
vmdModule.FileName + #13#10 + 'from ' +
IntToStr(iVersion) + ' to ' + IntToStr(iVersInc) +
'?', mtConfirmation, [mbYes, mbNo], 0) = mrYes) then

begin
if iPropType in [ptInteger, ptFloat] then

cpiComponent.SetPropByName(
vmdModule.Notifier.PropertyName, iVersInc)

else
begin

sVersion := IntToStr(iVersInc);
cpiComponent.SetPropByName(

vmdModule.Notifier.PropertyName, sVersion);
end;

end;
end;

{ Update component's property as date and time. }
procedure UpdateAsTime;
var

sVersion, sVersInc: string;
dVersion: TDateTime;
iPropType: TPropertyType;

begin
{ Check property type. }
iPropType := cpiComponent.GetPropTypeByName(

vmdModule.Notifier.PropertyName);
if not (iPropType in [ptString, ptLString,

ptLWString, ptVariant]) then
24 October 1999 Delphi Informant Magazine
begin
MessageDlg('Invalid property type for ' +

vmdModule.Notifier.ComponentName + '.' +
vmdModule.Notifier.PropertyName + ' -'#13#10 +
'must be string or variant for versioning',
mtError, [mbOK], 0);

Exit;
end;

{ Extract current value. }
try

cpiComponent.GetPropValueByName(
vmdModule.Notifier.PropertyName, sVersion);

dVersion := StrToDateTime(sVersion);
except

sVersion := '<none>';
end;

sVersInc := DateTimeToStr(Now);
{ Update to new value? }
if vmdModule.Notifier.AutoUpdate or

(MessageDlg('Update version of file ' +
vmdModule.FileName + #13#10 + 'from ' + sVersion +
' to ' + sVersInc + '?', mtConfirmation,
[mbYes, mbNo], 0) = mrYes) then

cpiComponent.SetPropByName(
vmdModule.Notifier.PropertyName, sVersInc);

end;

begin
{ Check for file being saved. }
if (NotifyCode = ncBeforeSave) and

vmdModule.Notifier.Enabled then
{ Get interface to this module. }
with vmdModule.ModuleInterface do

{ Get interface to the form. }
with GetFormInterface do

try
{ Look for component. }
cpiComponent := FindComponent(

vmdModule.Notifier.ComponentName);
try

{ And ask to update if found. }
if Assigned(cpiComponent) then

case vmdModule.Notifier.VersionBy of
iVersionByNumber: UpdateAsNumber;
iVersionByDate: UpdateAsTime;

end;
finally

cpiComponent.Free;
end;

finally
Free; { Form interface. }

end;
end;

End Listing One

25 October 1999 Delphi Informant Magaz

New & Used

By Robert Vivrette
CodeRush 4
Everything You Ever Wanted to Add to Delphi

One of the sayings that third-party developers live by is: “There is always room for
improvement.” This saying is particularly applicable to those third-party vendors

who make add-ons for the Delphi development environment. We’ve seen a lot of prod-
ucts along these lines: add-on component libraries, integrated wizards for creating cus-
tom projects, and — in the case of this review — products that extend the capabilities of
the Delphi Code editor.
Although Delphi’s Code editor has some wonderful
capabilities, developers often formulate their own list
of features they wish it had. I’ve used a number of
products that try to address this issue. Most of them
however, take the approach of creating a really fancy,
full-function editing system, having it run alongside
Delphi, and trying (with various degrees of success)
to keep your Delphi code and forms synchronized
with what you’re doing in this separate editor.

CodeRush takes a different approach. Because
Borland published the interface to their editor in
the Open Tools API, CodeRush is able to enhance
the Delphi Code editor itself, rather than running
as a separate editor. The advantages of this are
obvious: There’s no need to concern yourself about
switching between Delphi and an external editor,
and no need to worry about whether code or
design-time elements are synchronizing properly.

I had an opportunity to see some of the new capa-
bilities of this latest version of CodeRush at the
Borland developers conference in Philadelphia this
last July. Mark Miller (the architect of CodeRush
and owner of Eagle Software) is passionate about
his work, and it shows in the products he creates.

So let’s take a look at some of the features of
CodeRush.

Smart Keyboard Templates
The Delphi Code editor already has a rudimenta-
ry template facility. It has the ability to take short
(usually two- or three-character) key combinations
and expand them into larger sections of code. For
example, if you were to type ifeb and then hit
Delphi’s template hotkey (CJ), it will replace
ine
these four characters with a full if..then..else block
with begin..end blocks.

CodeRush takes this idea to the limit. Whereas
Delphi templates are fairly static, those used in
CodeRush have all sorts of embedded smarts. For
example, one of the options in CodeRush is to
define your coding style, i.e. how you indent your
begin..end blocks under an if statement, etc. The
templates are then aware of your preferences and
adapt accordingly. Another example is that tem-
plates know where they are; for example, expand-
ing the procedure block template generates differ-
ent behavior in the interface section, where it
might appear as procedure GetALine;, as
opposed to the implementation section, where it
might appear as procedure TForm1.GetALine;.
You can define your own templates or use any of
the more than 1,000 included.

One thing that has always disturbed me with
code templates, however, is that it’s virtually
impossible to remember them all. To be honest,
in previous versions of CodeRush, I turned them
off because they would expand character combi-
nations that I really didn’t know were defined as
templates. It just became too much of an irritant
as I was constantly undoing unwanted template
expansions. I almost felt like deleting every tem-
plate and defining them one at a time so my
brain could absorb the acronyms for them.

This latest version of CodeRush addresses this
issue quite nicely with the Template Coach (see
Figure 1). This window is dockable, like all the
other windows in Delphi (and CodeRush for that
matter). Its purpose is to give you tips concerning

New & Used
your use of the CodeRush templates. For example, it highlights the
templates you already know (and are making good use of), as well
as spotting opportunities for you to create your own templates. For
example, if you’re typing the same piece of code repeatedly, it adds a
recommendation to make a template from that piece of code. Also,

if you type blindly
along, ignoring
many of the tem-
plates available,
the Template
Coach will give
you tips on tem-
plates it recom-
mends you use.

The Template
Coach is a
tremendous idea,
and it opens up
the power of code
templates to those
— like me —
who have been
intimidated or
annoyed by them
in the past.Figure 1: The Template Coach.
26 October 1999 Delphi Informant Magazine

Figure 2: Using the visual stack-based markers in the code
templates.

Figure 3: There are many glyphs to use as bookmarks.
Visual Stack-based Markers
Programmers rarely sit in one piece of code for long; they hop over to
this function or that one, open up a different source code file, browse
through for a routine they want to use, etc. Stack-based markers are
used for exactly this purpose. Although Delphi has a rudimentary
form of these (the little back and forward buttons on the top-right of
the editor window), CodeRush’s visual markers are a real gem.

These markers can be used in two ways. First, they can be used as a
kind of breadcrumb-dropping mechanism. If ever you’re going to
move away from the spot where you’re working, you can drop one
of these markers and go wherever you like. When you’re done and
want to return to the marker, simply hit E, and — voilà! — back
you go. As indicated by their name, these markers are stack-based,
meaning you can place a bunch of these markers in sequence, then
jump back in sequence by repeatedly hitting E.

A second way these markers are used is within the code templates.
When a template is defined, you can indicate locations of where
markers should be placed. For example, in Figure 2, I typed wh, fol-
lowed by the space bar. This triggered one of the while code tem-
plates, which inserted a while statement with a begin..end block. In
addition to placing the cursor in the next logical spot (the condition
portion of the while statement), it has also placed a marker within
the begin..end block. Now, as soon as you’re done defining the con-
dition, you simply hit E and you’re transported down to within
the begin..end block. Ready to type!

Persistent Bookmarks
This is the feature of CodeRush that I personally find the handiest.
We’re all familiar with the way Delphi shows little icons in the gut-
ter on the left side of the editor window. Delphi typically only uses
this for showing breakpoints and the current execution point of the
application being debugged.

CodeRush’s persistent bookmarks significantly extend this capability by
allowing you to place various bookmarks in the gutter. You can select
from a wide variety of glyphs to use as bookmarks (see Figure 3).
Interestingly, most of the glyphs have unique properties. For exam-
ple, there are button glyphs that can be assigned an action when
they’re clicked and e-mail glyphs that will launch your default
e-mail client and address a message to a specific person. There is
even a checkbox glyph you can set to, obviously, check or uncheck
with an action associated with each. As an example, you could put
checkbox bookmarks next to conditional defines and have the
uncheck option clear the conditional define and the checked
option enable it. These are just a few of the hundreds of behaviors
that bookmarks can perform.

To make managing your bookmarks easier, there is also a dockable
window that shows all bookmarks that have been placed in the cur-
rently open project (see Figure 4). By clicking on any of the book-
marks in this window, you are immediately taken to the location of
that bookmark. And bookmarks are persistent, so even after you
close your files or project, the bookmarks will be there when you
come back.

Instant Declaration and Initialization
I don’t know about you, but when I write a procedure or func-
tion, I generally write all the code first and declare the local vari-
ables last. This is where CodeRush’s Instant Declaration and
Initialization feature really shines. All you need to do is visit the
variables one at a time and hit CAV on each. When

New & Used
CodeRush sees this key combination, it looks at the surrounding
context of the use of a variable and proposes a variable declara-

tion for it. For exam-
ple, when I posi-
tioned the cursor on
the a in the for loop
in Figure 5 and hit
CAV, it added
the local declaration
specifying a as an
Integer. When I did
the same for TmpStr,
it correctly detected
that it should be a
string and added its
declaration appropri-
ately.

Going one step fur-
ther, you can also trig-
ger this kind of decla-
ration on string liter-
als. In this case, it cre-

Figure 4: Clicking on a bookmark
immediately takes you to the location
of that bookmark.
27 October 1999 Delphi Informant Magazine

Figure 5: Before invoking CodeRush’s instant variable declara-
tion feature.

Figure 6: Variables automatically defined.

Figure 7: You can create and edit diagrams inside your
source code.
ated a local string constant named
sReadingLineNumber. The result is
shown in Figure 6.

Embedded Diagramming
How many times have you wished
you could insert a diagram in your
code explaining the relationship of
some object or class in relation to
another? Look no further; the
Professional version of CodeRush
allows you to create and edit diagrams
inside your source code (see Figure 7).
Although the Standard edition of
CodeRush only allows you to view
and print these diagrams, the
Professional version gives you a full
suite of tools for making any kind of
diagram you can imagine. Also
included is the ability to link diagram
portions together and provide hotlinks
between elements of the diagram and
associated pieces of source code.

The Tip of the Iceberg
I’ve really only touched on a few of the capabilities that
CodeRush adds to your Delphi development environment. It
would take about three or four times the space I had available in
this review to really do this product justice. One huge untouched
area is the fact that CodeRush is highly extensible. There is a wide
range of (mostly free) plug-ins for CodeRush that add to its fea-
tures, and the ability to make your own plug-ins is also included.
If you want to learn more about the additional capabilities
CodeRush provides, I encourage you to check out their excellent
Web site at http://www.eagle-software.com.

Conclusion
As you might have guessed, I like CodeRush quite a bit.
Interestingly, I was asked to review CodeRush over another individ-
ual, because I would be more likely to bring out its failures. I failed
at that task; I couldn’t find any. The entire product, from the docu-
mentation and online dynamic tutorial to the many details, is really
wonderfully solid, well thought out, and well designed.

If you feel the Delphi IDE is perfect and needs no improvement, then
I guess you won’t see any need for CodeRush’s capabilities. However, if
you’re like the 99.9 percent of Delphi developers out there who would
love it if the Delphi Code editor could just do “this one thing,” then
each of CodeRush’s many enhancements will be welcome. At US$199
for the Standard version and US$369 for the Professional version
(which adds diagram creation and editing), CodeRush is an easy buy,
considering the many amazing capabilities it adds. Go get it! ∆

From the documentation, and online
dynamic tutorial, to the many details,
CodeRush is solid, well thought out,
and well designed. If you feel the
Delphi IDE is perfect and needs no
improvement, you won’t see any need
for CodeRush’s capabilities. If you’re
like other Delphi developers who
would love it if the Delphi Code editor
could just do “this one thing,” then
each of CodeRush’s many enhance-
ments will be welcome.

Eagle Software
12021 Wilshire Blvd., Suite 655
Los Angeles, CA 90025

Phone: (310) 441-4096
Web Site: http://www.
eagle-software.com
Price: US$199 (Standard version);
US$369 (Professional version); site
licenses are available.

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached at RobertV@mail.com.

http://www.eagle-software.com
http://www.eagle-software.com

28 October 1999 Delphi Informant Magaz

New & Used

By Robert K. Leahey

Figure 1: ModelMaker with
ModelMaker 5
The Ultimate Delphi CASE Tool

I recently had a job interview that, naturally, included a technical evaluation. I had to
develop a test project on site, so the manager led me to a PC and turned me loose in

Delphi to create my masterpiece. I was only 10 minutes into development when I was
shaken with a realization: This machine did not have ModelMaker. I was doomed!
Okay, not really. In fact, I got the job, but it did
serve to show me how dependent I had become
upon a tool. ModelMaker 5 from ModelMaker is
a Delphi CASE tool for analysis and design.
However, that’s like saying Delphi is a program-
ming environment; it’s accurate, but somehow
fails to convey the scale of the application.

I happened upon ModelMaker a year ago when I
was searching for a UML tool that supported
Object Pascal. I found several products, most of
which seemed to support Delphi as an after-
thought, and were in the US$800+ price range.
ModelMaker (then in version 4) distinguished
itself by being affordable (US$199) and by being
specifically for Delphi. I bought it and began hap-
pily using it for class diagrams. Figure 1 shows a
screenshot of ModelMaker’s main interface.

As time went by, however, ModelMaker began
supplanting the other tools I was using for various
facets of development:
ine

Class Tree and Method Implementation view active.
Like many developers, my code-documenta-
tion requirements are high; ModelMaker
streamlines the sometimes redundant task of
code documentation.
I was using a help-generation tool to docu-
ment my custom components. It would parse
my code and look for specially formatted
comments to include in my Help file.
ModelMaker automated entering those for-
matted comments, then completely replaced
my help-generation tool.
For code differencing, I was using external prod-
ucts, such as PVCS or Visual Source Safe, that
would compare the source code as text and
point out the differences, which I would then
attempt to synchronize in Delphi. ModelMaker
offers powerful code comparison options (com-
pare as text, as classes, by time stamp, etc.) and
lets me correct differences in the editor.

In addition, ModelMaker reverse-engineers code,
handles unit management, integrates class diagrams
with code generation, supports design patterns,
greatly simplifies class/component creation, enables
COM and object-interface support, and, with ver-
sion 5, offers an Open Tools API similar to Delphi’s
that allows for development of third-party experts
to extend ModelMaker’s functionality.

Reverse Engineering
ModelMaker offers excellent reverse-engineering
capabilities, quickly breaking down a unit into its
classes and their members and converting that infor-
mation into ModelMaker’s Active Model format.
Immediately after importing a source file, you’ll be
able to begin editing and regenerating it with
ModelMaker’s various options having their effects.
For instance, at my previous job I would often
import a unit of code and regenerate it with my
source commenting options set simply to clean it up
and get a little documentation into an otherwise
sparsely documented legacy unit. In addition to
adding the comments, doing this would allow me to

: ModelMaker’s Difference view in Structured Difference mode.

New & Used
set the order in which the method implementations would
appear (alphabetically, access methods last, etc.), which is
nice for trying to negotiate someone else’s code. It’s even
possible to reverse-engineer your code documentation!

Imagine this scenario: You’re brought on to maintain a
large project with many units and classes and far too little
project documentation to guide you. All too common,
eh? Fear not! You start up your trusty ModelMaker,
import all the units, and begin building your own project
documentation right from the code. You enter
ModelMaker’s Diagram Editor and, using the
Visualization Wizard, effortlessly create several UML-
style class diagrams displaying relations. Because
ModelMaker also imported what code documentation
there was, you use the Documentation Wizard to com-
ment what’s left, then hit the Help File Generation
Wizard to create a quick Help file for the project’s classes.
In a short time, you’ve created an impressive amount of
documentation (without actually knowing anything about the pro-
ject), all from the initial code import.

Code Documentation
Code documentation was one of the things that impressed me the most
when I first started using ModelMaker. The possibilities here are nearly
endless. Because of ModelMaker’s macro implementation, it’s possible
to automate large portions of the task of documentation. User-defined
and pre-defined macros can be used with a page full of documentation
options to create some heavily customized, yet automated, comments.

Many packages that allow reverse-engineering will ignore your code
comments when parsing your code, thus forcing you to somehow re-
integrate your documentation. ModelMaker, on the other hand,
makes it possible for you to import your code comments with your
code. By formatting your comments correctly, ModelMaker will
import your documentation and apply it to the appropriate method
or object within the active modeling engine. As a package, this is
one impressive, well-designed, time-saving set of features.

Help Generation
It’s not a WinHelp editor; you’re on your own for that. However,
ModelMaker will quickly and unobtrusively create a Help project file
(.HPJ) and a topic file (.RTF) from your model and your model’s
documentation that you can then compile. The topic file is created
using RTF templates that you can edit to produce the look you want.

For those who are not used to directly editing RTF files to create
Help files, this may not be much help (unless you accept the default
results, which aren’t bad). For those who can wrestle with RTF, this
is an excellent feature that can produce good, detailed component
(or project) documentation with minimum fuss.

Differencing
So you’ve been doing all your development in ModelMaker, making
changes, generating the code, then compiling in Delphi. Then one
morning, you come in and some non-ModelMaker-using Philistine
has edited your source by hand. In Delphi, of all things! The source
code is now out of synch with the model. Ack! Well, fear not,
grasshopper; ModelMaker understands that these things happen. It
will help you find the path.

The Differences view, shown in Figure 2, offers a smorgasbord of
methods for determining who’s up-to-date, including a time-stamp

Figure 2
29 October 1999 Delphi Informant Magazine
comparison (for one or all units); a structured comparison, which
shows differences by class and member; a file comparison, which is a
straight text compare; and a class comparison, which will compare
two selected classes.

Once the differences have been determined, you have a variety of
options for synchronizing the model. You can re-import entire
units or individual methods, or you can overwrite the source file
from the model.

Class Diagrams
It’s ironic. This feature is why I originally purchased ModelMaker, but
now that I know more about UML, I can see that ModelMaker is a bit
lacking here. Basically, the Diagram Editor in ModelMaker is intended
to give a view (or views) into the model. ModelMaker supports classes,
interfaces, relationships, and annotation symbols, but if you’re looking
for a full UML editor, ModelMaker isn’t it — yet.

Having spoken to Gerrit Beuze (one of the authors of
ModelMaker) about this issue, he agrees and states that over the
coming months, improving UML support will be one of their pri-
orities. That’s no small thing. The rate at which these guys come
out with increased functionality is astounding. Every few weeks,
they come out with a new build, and those builds often have more
improvements than many products’ major releases.

That being said, the Diagram Editor is an excellent view into the
model. Some cool features of the Diagram Editor include:

Visualization Wizard — a tool for adding multiple classes and
relationships to a diagram.
Drag/Drop — is there a class in the model that you want to
add? Drag it into the diagram. Associations will be automati-
cally visualized.
Class editing — selecting a class in the diagram is the same
as selecting it in the class tree. Its members are displayed in
the Member List, allowing editing of the class from within
the diagram. Likewise, if TMyClass and TMyOtherClass are
both in the diagram, and you want TMyClass to have a prop-
erty of type TMyOtherClass, use the Add Property tool to
drag an association between them. Not only will the relation-
ship be displayed in the diagram, the property will also be
automatically added.
Interface Implementation — to have a class in the diagram
implement an interface, use the Add Interface Support tool to

Figure 3: ModelMaker with Unit view and Diagram Editor active.

Figure 4: ModelMaker’s TObject property dialog box.

New & Used
drag an association between them. The interface will be added
to the class’ declaration.

In spite of ModelMaker’s limited UML support, I’m still able to
use the Diagram Editor for productive brainstorming and project
documentation.

Class Creation
Part of why I became lost in that job interview was that I had become
heavily dependent on ModelMaker’s automation. Adding a new class
or interface is easy, but fleshing out that new class or interface is
ridiculously easy (from now on, I’ll simply say “class” when referring
to a class or an interface). Any time a class is selected, all of its mem-
bers are displayed in the member list (see the lower-left corner of
Figure 3), which is filterable to show members by kind or scope.

Clicking any of the Add buttons (property, field, method, event, or
method resolution clause) displays the appropriate editor dialog box,
and allows you to completely define the new member. Each of these
dialog boxes allows total control over the members, but the Property
Editor deserves particular attention (see Figure 4).
30 October 1999 Delphi Informant Magazine
Note that we’re only looking at the first page of options.
The second page allows you to control such things as stor-
age and default specifiers, implementation mapping,
indexed properties, etc. As you can see on this page, you
can specify the property’s settings, such as visibility and
type; but most notably, to the right of the Read Access and
Write Access radio button groups, you see a set of options
that include State Field, Read Code, ‘const’ write param,
Write Code, and Ext. write code. I point out these options as
an example of how much ModelMaker automates.

If you add a property, the read and write access defaults
to field; if you add MyProperty, you will also get the pri-
vate field FMyProperty, added by ModelMaker. If you
then change the read or write access to Method,
GetMyProperty or SetMyProperty is automatically added.
All of this is maintained by ModelMaker. Now, assuming
you’re using access methods, the aforementioned options
allow you to do things such as automatically add stan-
dard “read code” to your GetMyProperty method or
extended “write code” to your SetMyProperty method.

Suffice it to say that, with the right options set, you can
click Add Property and have the property, the property’s
state field, and its read and write access methods (com-
plete with read and write code) automatically added.
That’s a whole lot of code for just a few clicks.

Speaking of maximum code for minimum clicks, I have
to mention a little thing called the Creational Wizard.
It’s an odd name, but it’s a powerful tool. As you create
fields (and state fields for properties), you can specify
that a field is to be initialized. If you then run the
Creational Wizard, it will check your object for initial-
ized fields and suggest code to place in the object’s con-
structor and destructor. As you update your class, you
can run the wizard to update that automated code (just
something else you don’t have to remember to do).

Interface Support
ModelMaker offers thorough COM and Object Interface
support, adding interfaces to the Class Tree and simplify-

ing creation and implementation of interfaces through things such
as the Interface Wizard (see Figure 5). The Interface Wizard com-
pares an object and the interface it implements, displaying dispari-
ties and suggestions for correcting the implementation. You can
accept some or all of the wizard’s suggestions, and ModelMaker will
implement the suggested changes for you.

Design Pattern Support
ModelMaker actively supports the following patterns: Visitor, Observer,
Wrapper, Singleton, Mediator, Decorator, ReferenceCount, and Lock.
By “actively,” I mean that code to support the selected pattern is added
and maintained by ModelMaker, and if you choose to remove the pat-
tern, all the code is removed for you. Most of the patterns have wizards
to simplify integration of the pattern into existing classes.

Open Tools API
With version 5, ModelMaker has introduced an Open Tools API similar
to Delphi’s. Though still in its infancy (version 4 as of this writing), the
API shows a great deal of promise. Currently, it doesn’t give much access
to the UI, but it does provide near-total access to the model. Take this
as an example of its power: The ModelMaker developers are creating

Figure 5: ModelMaker’s Interface Wizard.

New & Used
the new ModelMaker UI using it. They are
able to test their new UI designs in the
existing ModelMaker builds. (It also allows
me to send them some UI ideas without
having access to the ModelMaker source.)

I’ve already written two experts that I use
constantly. One is a CodeSite (by Raize
Software Solutions) messaging expert that I
can use to insert any of the CodeSite object
methods into my model. The other is
designed to take advantage of a new
Instrumentation feature in ModelMaker.
This feature was added to support products,
such as CodeSite and GpProfile. Every
method in ModelMaker has an
Instrumentation option that, if selected, will
add the contents of certain macros at the
beginning and ending of the method. My
expert is designed to simplify the toggling
of the option for many methods at once.

Just as the third-party experts have extended Delphi immensely,
expect some heavy-duty experts to extend ModelMaker as well.

Cons
No application is perfect, and as highly as I recommend
ModelMaker, it does have some problems.

The printed and online documentation for ModelMaker is improving,
but still slightly lacking. What’s ironic about this is that I’ve been volun-
teering to create online Help files for ModelMaker. I have some files in
place, and I update them when I can, but they are far from comprehen-
sive. The current printed documentation for ModelMaker is thorough,
but it’s from version 3.3. There’s still a great deal that is applicable in the
document, and Gerrit has said that he is updating the file (removing the
out-of-date, version-specific material) and creating one that will be more
of a “What-to-do,” and the Help files will be “How-to-do.”

One common Object Pascal capability that is conspicuously unsup-
ported is conditional defines. Although you can enter conditional
code in the implementation editors, you can’t, for instance, enclose a
property within conditional statements. Gerrit acknowledges this
limitation and says that, though he would love to offer that func-
tionality, his team decided (rightly, I think) that the considerable
amount of effort required to support this feature was better spent on
other capabilities, e.g. COM support.

Another complaint I have — and this one stems from my philosophy of
UI design — is that not all commands are available from all UI
metaphors. There are menu people, toolbar people, and keyboard peo-

ModelMaker is a Delphi CASE
tool that provides integrated sup-
port for reverse engineering, code
maintenance, class diagrams,
documentation, design patterns,
code differencing, COM/object
interfaces, and class hierarchy
maintenance, all from a single
active model.

ModelMaker
Stenenkruis 27 B
6862 XG Oosterbeek
Netherlands

E-Mail: info@modelmaker.
demon.nl
Web Site: http://www.
modelmaker.demon.nl
Price: US$199 for a single-user
license.
31 October 1999 Delphi Informant Magazine
ple. I tend to be a combo keyboard-and-toolbar person, but for
some functionality, I am forced to go to the ModelMaker main
menu or a context menu, rather than have a toolbar button to
click. The good news is that the ModelMaker team is currently
developing the new UI and welcomed my feedback, so this
point may be moot by the time this is in print.

Conclusion
You may have noticed that I mention speaking to Gerrit Beuze
a lot. This is not a result of some special relationship I have
with him; rather, it’s a result of the amazing support that
ModelMaker offers. ModelMaker’s support is one of the things

that won me over early. Their response time is excellent, and they are
always ready to hear your suggestions for their product. They have
repeatedly shocked me by releasing a new build that includes a feature
from a suggestion that I may have made only days before.

I actually use this tool more throughout my day than I do Delphi.
Obviously, I use Delphi to create forms and compile code and such,
but for virtually everything else, I use ModelMaker. By the way, even
compiling can be triggered from ModelMaker (choose from Syntax

Check, Compile, or Build All).

ModelMaker is worth well more than the asking price. My suggestion
is that you download the evaluation demonstration immediately. ∆

Robert has spent the last five years in the Dallas/Ft. Worth area developing
Delphi applications. Prior to that, he specialized in electronic publishing and
graphic design (skills now put to use as a Web developer). Robert is also a musi-
cian and has played professionally for 15 years.

http://www.modelmaker.demon.nl
http://www.modelmaker.demon.nl

File | New
Directions / Commentary
An Interview with Ray Konopka

Ray Konopka is president of Raize Software Solutions, Inc., an independent consulting firm and producer of Delphi
tools. He has been the chief architect of its products, including Raize Components and the new debugging tool,

CodeSite. A contributing editor of Visual Developer Magazine, writing the “Delphi by Design” column, and author of the
best-selling Developing Custom Delphi Components and Developing Custom Delphi 3 Components from Coriolis Group
Books, Konopka is a frequent and popular speaker at international developer conferences and user groups. Information
about his books and products can be found at http://www.raize.com.
DI: You’re involved in a variety of activities: You produce software,
write books and articles, do some consulting, and give talks and pre-
sentations. What are some of the challenges of such a varied career,
and what strategies have you developed to “keep it all together?”

Konopka: It sure does sound like a lot of different tasks, doesn’t it?
Well, it certainly helps that I’m a highly organized person, but the
main reason I can juggle so many tasks is that I try to reuse the
results of my work as much as possible.

For example, I might be working on one of our products and come
across a technique that is not widely known or documented — or is
just plain cool. I then use the knowledge I gained from the experi-
ence and write an article about the topic for my “Delphi by Design”
column. This in turn could easily become a new presentation that I
give at developer conferences. Of course, each task requires express-
ing the information in slightly different ways, but the technical
details are reused over and over.

DI: I understand that Raize Components grew out of your work as
a consultant. Could you talk a bit about how that happened?

Konopka: Shortly after I started using Delphi (way back in early
1994 — it wasn’t even called Delphi back then), I had envisioned
creating a set of commercial components. As a result, I had already
created several custom components by the time I started Raize
Software Solutions in February of 1995. Unfortunately, I didn’t have
the funding to create a commercial product, so I began consulting.

Back then, I was often asked to create components that provided
features that were not available in Delphi 1. I arranged it with all of
our clients that my company would own the rights to all general-
purpose components that I created. Of course, the client retained all
proprietary components.

Those general-purpose components provided much of the mater-
ial that became part of my first book. In fact, while writing the
book, one of my goals was to present a set of components that
developers would consider on par with a commercial product. It
was clear I reached this goal when I started to receive messages
32 October 1999 Delphi Informant Magazine
from developers asking if it was okay for them to use the compo-
nents in their applications.

It was at this time that we decided to produce the commercial ver-
sion of Raize Components. Of course, we knew we needed to create
something way beyond what was presented in the book, but we
started with 16 of the book’s components as a foundation. After
enhancing these components, we created 27 new components for
the first version of Raize Components.

DI: I’d like to explore the world of component writing with you a
bit. At one time many developers viewed writing components as an
“advanced topic;” is this still the case?

Konopka: One of my goals in writing Developing Custom Delphi
Components was to make component writing more approachable.
While I believe this is now true, it really comes down to what you
want to create. For example, do you think many developers would
consider object-oriented programming an advanced topic? At one
time they did, but I would hope that this is no longer the case. Of
course, there are still areas within OOP which are considered
advanced. For example, design patterns.

My point is that the same can be said with respect to component
writing. For example, the process of creating custom components is
well documented, and there are even tools available to help you.
However, I believe everyone would consider creating a new custom
grid component to be an advanced task.

DI: I’d like to discuss come general Delphi issues. While you sup-
port C++Builder in your various products, Delphi seems to be cen-
tral to your programming activities. What do you consider its most
important strength? What is the one area of Delphi you feel needs
to be improved the most?

Konopka: There are two aspects of Delphi that I consider extremely
important. The first is Object Pascal. It’s an extremely powerful and
elegant language, and more importantly, it’s easy to read and main-
tain. The second is the fact that components are objects. The VCL is
truly the power that drives Delphi.

http://www.raize.com

File I New
As for improvements, I don’t believe I could single out one par-
ticular area. There are areas throughout the product that could be
improved. For example, I would very much like to be able to reg-
ister multiple component editors for a given component. It is
possible to manage this now by chaining editors together, but
there are several problems with the approach and it really should
be built into Delphi.

In addition, I’d like to see component templates replaced with a
way to build true compound components visually. I’d also like to
see the Delphi IDE move toward an interface similar to Visual
Studio. That is, an MDI-style approach where I can create a work
area that is used for all my projects. The docking support in
Delphi 4 provides some of this, but it’s managed on a per-project
basis and is focused around the Code Editor rather than a main
frame window.

DI: One of the more pleasant surprises that accompanied the
release of Delphi 4 was the almost immediate release of a Delphi 4
version of the Raize Components. While some companies were able
to provide timely updates, others were not. What steps did you
have to take to be ready with the update? Were there any problems?

Konopka: As a tools and component provider for Delphi, we’re eli-
gible to participate in Delphi field tests. As each new field test is
released, we check to make sure our products work with the new
build. As for problems, there were some minor changes required,
but the VCL has essentially been unchanged since version 1.

DI: There have been many changes at Inprise and the company has
certainly had its ups and downs. Often I see discussions on the
Internet about Inprise in general and Delphi in particular, focusing
on the direction in which this company is moving and the implica-
tions for its flagship product. Could you share some of your observa-
tions and views? What will the future hold for Delphi?

Konopka: Back in 1998, I would have answered this question by
commenting on how at the Inprise Conference in Denver, the major
push by Inprise was the Enterprise and Distributed Computing.
Certainly valid topics, but not everyone is working in these areas. It
appeared that Inprise was sacrificing its current customer base in its
attempts to attract the enterprise. Furthermore, it was unclear what
role Delphi was going to play in all of this. For example, it did not
go unnoticed that Delphi was not even mentioned during the con-
ference’s opening keynote.

Fortunately, I now have a much more positive outlook on all this. I
believe the Inprise/Borland.com split is a great move. As two compa-
nies, Inprise can continue to focus on the enterprise, while Borland
can once again focus on their development tools, and more impor-
tantly on individual developers. It’s important to note that the two
customer bases are not mutually exclusive — every corporate enter-
prise development team is made up of individual developers.

As for the future of Delphi, there are several factors that will deter-
mine the future of Delphi. First and foremost, Borland needs to
continue to make Delphi the best development tool for Windows.
However, in the long term, I think it would make sense for Borland
to consider creating Delphi for other platforms, such as Windows
CE and Linux.

DI: I think that would please a lot of developers. Like many others,
I’ve been interested in the health of the Delphi community, which I
33 October 1999 Delphi Informant Magazine
think is very good. I see the proliferation of discussion groups, user
groups, Web sites, and organizations like Project Jedi as an indica-
tion that developers are willing to reach out and help each other.
Could you comment on this?

Konopka: The Delphi developer community is like no other that I
have been involved with. Delphi developers are a very loyal group of
people and have demonstrated again and again their willingness to
help other developers. Just consider the number of free Delphi com-
ponents that are available on the Web. To other developers, this is a
great resource, but as a commercial provider of Delphi components
and tools, we are forced to view all this free software as competition.
No easy feat, but we have managed.

Unfortunately, not all the free software that is available is legiti-
mate. There have been several instances where technology that we
developed has appeared in a free product. Some developers
believe that copyrights of other products do not apply if their
product is given away for free with source code. If this type of
behavior continues, it will deteriorate the Delphi third-party
commercial market.

DI: Are you planning to write any new books in the near future?

Konopka: At the time of this interview, there are no formal plans for
a new book. However, I am talking with the publisher about a third
edition of Developing Custom Delphi Components.

DI: I’d like to end with a very general question. Windows is very
popular right now as a computing environment, particularly in the
home computing market. Do you see any indications that this will
change in the future?

Konopka: I believe Windows will remain popular for quite some
time. There is simply too much money invested in the technology
(machines and software) for companies and consumers to switch to
something different. This is not to say that something else won’t
come along. Linux is getting a lot of press these days, just like Java
did a year or two ago. But like Java, Linux is being targeted more
at the server market. I believe client machines and consumer PCs
will continue to be Windows-based for quite some time. ∆

— Alan C. Moore, Ph.D.

Note: This is an abridged version of the interview. The complete inter-
view is available on the Delphi Informant Web site at
http://www.DelphiMag.com.

Alan Moore is a Professor of Music at Kentucky State University, special-
izing in music composition and music theory. He has been developing
education-related applications with the Borland languages for more than
10 years. He has published a number of articles in various technical
journals. Using Delphi, he specializes in writing custom components and
implementing multimedia capabilities in applications, particularly
sound and music. You can reach Alan on the Internet at
acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	Woll2Woll Releases 1stClass
	Triple-T Releases Style One 2.0
	Z-Soft Announces FileProbe 1.02
	PGC’s InstallConstruct 3.1 Is Shipping
	Software Productivity Centre Announces ESTIMATE Professional 4.0
	Enterprise One Unveils Jaadu 2.0
	Pegasus Software Releases ImagN’ 4 with CadXpress
	EvoCorp Releases ActiveIE Component Suite
	Shaman Delivers Enterprise Shaman 3.2.3

	Delphi News
	Inprise Announces Borland Delphi 5
	Inprise Announces the Office of Chief Scientist
	Inprise Wins Four Awards at JavaOne
	Inprise Announces Commitment to Java

	Columns & Rows
	Using the ADOConnection and ADODataSet Components
	Should You Convert to ADO?
	The ADOCommand Component
	Cursor Types
	Transaction Isolation Levels
	Conclusion

	OP Tech
	Windows Application Architecture
	Messages and the Window Procedure
	From Messages to Events
	Message Handlers
	Events
	A ScrollBox with OnScroll Events
	Deriving TNewScrollBox
	Conclusion
	Begin Listing One — NewScrollBox.pas

	Sound + Vision
	Getting Started
	Programming Agents
	Synchronizing Character Animations
	Moving the Character
	Interacting with Other Agents
	Interacting with Users
	Conclusion

	In Development
	Versioning Add-in
	Creating the Add-in
	Configuration
	Project Tracking
	Module Tracking
	Installation
	Conclusion
	Begin Listing One — Updating the version label on a module save

	New & Used
	Smart Keyboard Templates
	Visual Stack-based Markers
	Persistent Bookmarks
	Instant Declaration and Initialization
	Embedded Diagramming
	The Tip of the Iceberg
	Conclusion

	New & Used
	Reverse Engineering
	Code Documentation
	Help Generation
	Differencing
	Class Diagrams
	Class Creation
	Interface Support
	Design Pattern Support
	Open Tools API
	Cons
	Conclusion

	File I New

